Equation of State for Astrophysical Applications

Stefan Typel

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt Nuclear Astrophysics Virtual Institute

Workshop MODE-SNR-PWN "Pulsars and their environments" L'Observatoire de Paris Meudon, France

Outline

• Introduction

Astrophysics and EoS, Theoretical Approaches, EoS for Astrophysical Applications, Correlations, Constraints

• Generalized Relativistic Density Functional

Details of gRDF Model, Properties of Nuclei, Nuclear Matter Parameters, Symmetry Energy, Stellar Matter, Low-Density Limit, Mass Shifts, Constraint from Heavy-Ion Collisions, EoS Table, Neutron Star Matter, Low-Temperature Limit, Hyperon Puzzle, Optical Potential Constraint

• Conclusions

Introduction

Astrophysics and Equation of State

• essential ingredient in astrophysical model calculations:

Equation(s) of State of dense matter

- ⇒ dynamical evolution of core-collapse supernovae, neutron star mergers
- \Rightarrow static properties of neutron stars
- \Rightarrow conditions for nucleosynthesis
- ⇒ energetics, chemical composition, transport properties, . . .

X-ray: NASA/CXC/J.Hester (ASU) Optical: NASA/ESA/J.Hester & A.Loll (ASU) Infrared: NASA/JPL-Caltech/R.Gehrz (Univ. Minn.)

NASA/ESA/R.Sankrit & W.Blair (Johns Hopkins Univ.)

Astrophysics and Equation of State

essential ingredient in astrophysical model calculations:

Equation(s) of State of dense matter

- ⇒ dynamical evolution of core-collapse supernovae, neutron star mergers
- \Rightarrow static properties of neutron stars
- \Rightarrow conditions for nucleosynthesis
- ⇒ energetics, chemical composition, transport properties, . . .
- timescale of reactions ≪ timescale of system evolution ⇒ equilibrium (thermal, chemical, ...) ⇒ application of EoS reasonable

X-ray: NASA/CXC/J.Hester (ASU) Optical: NASA/ESA/J.Hester & A.Loll (ASU) Infrared: NASA/JPL-Caltech/R.Gehrz (Univ. Minn.)

NASA/ESA/R.Sankrit & W.Blair (Johns Hopkins Univ.)

Astrophysics and Equation of State

essential ingredient in astrophysical model calculations:

Equation(s) of State of dense matter

- ⇒ dynamical evolution of core-collapse supernovae, neutron star mergers
- \Rightarrow static properties of neutron stars
- \Rightarrow conditions for nucleosynthesis
- ⇒ energetics, chemical composition, transport properties, . . .
- timescale of reactions ≪ timescale of system evolution ⇒ equilibrium (thermal, chemical, ...) ⇒ application of EoS reasonable
- wide range of thermodynamic variables (temperature, density, isospin asymmetry)
 ⇒ global, multi-purpose EoS required

T. Fischer, Uniwersytet Wrocławski

- hadronic 'ab-initio' methods with realistic interactions
 - interactions: potential models, meson-exchange, chiral forces, RG evolved (Argonne, Urbana, Tucson-Melbourne, Nijmegen, Paris, Bonn, ...)
 - ⇒ two-body NN interaction (in vacuum) well constrained by experiment, three-body forces less, large uncertainties for YN, YY, etc.

- hadronic 'ab-initio' methods with realistic interactions
 - interactions: potential models, meson-exchange, chiral forces, RG evolved (Argonne, Urbana, Tucson-Melbourne, Nijmegen, Paris, Bonn, ...)
 - \Rightarrow two-body NN interaction (in vacuum) well constrained by experiment,
 - three-body forces less, large uncertainties for YN, YY, etc.
 - many-body methods: (D)BHF, SCGF, CBF, VMC, GFMC, AFDMC, EFT, . . .

- hadronic 'ab-initio' methods with realistic interactions
 - interactions: potential models, meson-exchange, chiral forces, RG evolved (Argonne, Urbana, Tucson-Melbourne, Nijmegen, Paris, Bonn, ...)
 - ⇒ two-body NN interaction (in vacuum) well constrained by experiment, three-body forces less, large uncertainties for YN, YY, etc.
 - many-body methods: (D)BHF, SCGF, CBF, VMC, GFMC, AFDMC, EFT, ...
- QCD-based/inspired descriptions
 - Lattice QCD, pQCD, DS, (P)NJL, bag models, . . .

- hadronic 'ab-initio' methods with realistic interactions
 - interactions: potential models, meson-exchange, chiral forces, RG evolved (Argonne, Urbana, Tucson-Melbourne, Nijmegen, Paris, Bonn,)
 - ⇒ two-body NN interaction (in vacuum) well constrained by experiment, three-body forces less, large uncertainties for YN, YY, etc.
 - many-body methods: (D)BHF, SCGF, CBF, VMC, GFMC, AFDMC, EFT, ...
- QCD-based/inspired descriptions
 - Lattice QCD, pQCD, DS, (P)NJL, bag models, . . .
- ⇒ methods not always applicable (methodological/technical limitations)
- \Rightarrow many EoS for neutron matter & neutron star matter, but

no global EoS for astrophysical applications available from these approaches

- hadronic 'ab-initio' methods with realistic interactions
 - interactions: potential models, meson-exchange, chiral forces, RG evolved (Argonne, Urbana, Tucson-Melbourne, Nijmegen, Paris, Bonn,)
 - ⇒ two-body NN interaction (in vacuum) well constrained by experiment, three-body forces less, large uncertainties for YN, YY, etc.
 - many-body methods: (D)BHF, SCGF, CBF, VMC, GFMC, AFDMC, EFT, ...
- QCD-based/inspired descriptions
 - Lattice QCD, pQCD, DS, (P)NJL, bag models, . . .
- ⇒ methods not always applicable (methodological/technical limitations)
- \Rightarrow many EoS for neutron matter & neutron star matter, but

no global EoS for astrophysical applications available from these approaches

only phenomenological models for global EoS at present

• **constituents**: mostly considered are

nucleons, nuclei (light/heavy/representative), leptons, photons, . . .

- constituents: mostly considered are nucleons, nuclei (light/heavy/representative), leptons, photons, . . .
- models: often combination of different approaches (Skyrme/Gogny/relativistic mean-field models, NSE, virial EoS, density functionals, classical/quantum molecular dynamics,)

- constituents: mostly considered are nucleons, nuclei (light/heavy/representative), leptons, photons, . . .
- models: often combination of different approaches (Skyrme/Gogny/relativistic mean-field models, NSE, virial EoS, density functionals, classical/quantum molecular dynamics, . . .)

• global EoS used in astrophysical simulations:

- H&W W. Hillebrandt, K. Nomoto, R.G. Wolff, A&A 133 (1984) 175
- o LS180/220/375 J.M. Lattimer, F.D. Swesty, NPA 535 (1991) 331
- STOS (TM1) H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, NPA 637 (1998) 435, PTP 100 (1998) 1013

- constituents: mostly considered are nucleons, nuclei (light/heavy/representative), leptons, photons, . . .
- models: often combination of different approaches (Skyrme/Gogny/relativistic mean-field models, NSE, virial EoS, density functionals, classical/quantum molecular dynamics, . . .)

• global EoS used in astrophysical simulations:

- o H&W W. Hillebrandt, K. Nomoto, R.G. Wolff, A&A 133 (1984) 175
- o LS180/220/375 J.M. Lattimer, F.D. Swesty, NPA 535 (1991) 331
- STOS (TM1) H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, NPA 637 (1998) 435, PTP 100 (1998) 1013
- HS (TM1,TMA,FSUgold,NL3,DD2,IUFSU) M. Hempel, J. Schaffner-Bielich, NPA 837 (2010) 210
- SHT (NL3) G. Shen, C.J. Horowitz, S. Teige, PRC 82 (2010) 015806, 045802, PRC 83 (2011) 035802
- SHO (FSU1.7, FSU2.1) G. Shen, C.J. Horowitz, E. O'Connor, PRC 83 (2011) 065808
- SFHo/SFHx A.W. Steiner, M. Hempel, T. Fischer, ApJ 774 (2013) 17
- o recently many more, also with additional degrees of freedom (hyperons, quarks)

- low densities (much below nuclear saturation density) two-, three-, . . . many-body correlations due to short-range NN interaction

 modification of thermodynamic properties
 - \circ bound states appear as new particle species \Rightarrow change of chemical composition

- low densities (much below nuclear saturation density) two-, three-, . . . many-body correlations due to short-range NN interaction

 modification of thermodynamic properties
 - \circ bound states appear as new particle species \Rightarrow change of chemical composition
- intermediate densities (around/above nuclear saturation density) uniform neutron-proton matter
 o mean-field effects dominate ⇒ quasiparticle picture

- low densities (much below nuclear saturation density) two-, three-, . . . many-body correlations due to short-range NN interaction
 modification of thermodynamic properties
 - \circ bound states appear as new particle species \Rightarrow change of chemical composition
- intermediate densities (around/above nuclear saturation density) uniform neutron-proton matter
 o mean-field effects dominate ⇒ quasiparticle picture
- high densities (much above nuclear saturation density) strange matter? quark matter? meson condensates?

- low densities (much below nuclear saturation density) two-, three-, . . . many-body correlations due to short-range NN interaction
 modification of thermodynamic properties
 - \circ bound states appear as new particle species \Rightarrow change of chemical composition
- intermediate densities (around/above nuclear saturation density) uniform neutron-proton matter
 o mean-field effects dominate ⇒ quasiparticle picture
- high densities (much above nuclear saturation density) strange matter? quark matter? meson condensates?

• at low temperatures

inhomogeneous matter

• nuclear matter: "liquid-gas" phase transition

(no Coulomb interaction, no electrons, no charge neutrality)

 stellar matter: formation of lattice structures, clustering, "pasta phases" (charge neutrality, interplay of surface effects, long-range Coulomb interaction, entropy)

Constraints

• from **laboratory experiments**

• properties of nuclei:

masses, charge/diffraction radii, surface properties, giant resonances, . . .

- characteristic nuclear matter parameters (mostly indirect): saturation density, binding energy, compressibility, symmetry energy, . . .
- heavy-ion collisions (often by comparison to numerical simulations): collective flow, particle yields (e.g. light nuclei, mesons), . . .

Constraints

• from **laboratory experiments**

• properties of nuclei:

masses, charge/diffraction radii, surface properties, giant resonances, . . .

- characteristic nuclear matter parameters (mostly indirect): saturation density, binding energy, compressibility, symmetry energy, . . .
- heavy-ion collisions (often by comparison to numerical simulations): collective flow, particle yields (e.g. light nuclei, mesons), . . .

• from calculations

• 'ab-initio' theory:

EoS of neutron matter/symmetric nuclear matter, . . .

• virial EoS:

exact low-density limit at finite temperatures

Constraints

• from **laboratory experiments**

• properties of nuclei:

masses, charge/diffraction radii, surface properties, giant resonances, . . .

- characteristic nuclear matter parameters (mostly indirect): saturation density, binding energy, compressibility, symmetry energy, . . .
- heavy-ion collisions (often by comparison to numerical simulations): collective flow, particle yields (e.g. light nuclei, mesons), . . .

• from calculations

• 'ab-initio' theory:

EoS of neutron matter/symmetric nuclear matter, ...

• virial EoS:

exact low-density limit at finite temperatures

- from astronomical observations
 - properties of neutron stars:
 masses, radii, rotation, cooling, . . .
 - core-collapse supernovae:

explosion dynamics, neutrino signal, nucleosynthesis, . . .

- extension of relativistic mean-field (RMF) models
 - basic constituents: nucleons (n,p), mesons (ω, σ, ρ) , photons (γ) , hyperons (optional)
 - \circ minimal coupling of mesons/photons to nucleons

 - \circ density-dependent meson-nucleon couplings
 - suggested by Dirac-Brueckner calculations of nuclear matter

- extension of relativistic mean-field (RMF) models
 - basic constituents: nucleons (n,p), mesons
 - (ω, σ, ρ) , photons (γ) , hyperons (optional)
 - \circ minimal coupling of mesons/photons to nucleons
 - density-dependent meson-nucleon couplings
 - suggested by Dirac-Brueckner calculations of nuclear matter
- thermodynamically consistent formulation
 - \Rightarrow "rearrangement" contributions to self-energies and thermodynamic quantities

- extension of relativistic mean-field (RMF) models
 - basic constituents: nucleons (n,p), mesons
 - (ω, σ, ρ) , photons (γ) , hyperons (optional) \circ minimal coupling of mesons/photons to nucleons
 - minimal coupling of mesons/photons to nucleon
 - density-dependent meson-nucleon couplings
 - suggested by Dirac-Brueckner calculations of nuclear matter
- thermodynamically consistent formulation
 - \Rightarrow "rearrangement" contributions to self-energies and thermodynamic quantities
- specific features of relativistic description:
 - novel saturation mechanism for nuclear matter (vector vs. scalar self-energies)
 - \circ spin-orbit interaction automatically included
 - no superluminal speed of sound

- extension of relativistic mean-field (RMF) models
 - \circ basic constituents: nucleons (n,p), mesons
 - (ω, σ, ρ) , photons (γ) , hyperons (optional)
 - \circ minimal coupling of mesons/photons to nucleons
 - density-dependent meson-nucleon couplings
 - suggested by Dirac-Brueckner calculations of nuclear matter
- thermodynamically consistent formulation
 - \Rightarrow "rearrangement" contributions to self-energies and thermodynamic quantities
- specific features of relativistic description:

 novel saturation mechanism for nuclear matter (vector vs. scalar self-energies)
 spin-orbit interaction automatically included
 no superluminal speed of sound
- phenomenological approach with 9 parameters
 o determined from fit to properties of finite nuclei

Properties of Nuclei

- used in the fit of the RMF parameters:
 - \circ binding energies, spin-orbit splittings
 - properties of charge form factor (charge radius, diffraction radius, surface thickness)

NL3: G. A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55 (1997) 540

Nuclear Matter Parameters

• energy per nucleon near saturation:

$$\frac{E}{A}(n,\beta) = \frac{\varepsilon}{n} - m = -B_{\text{sat}} + \frac{K}{18}x^2 - \frac{K'}{162}x^3 + \beta^2\left(J + \frac{L}{3}x + \dots\right) + \dots$$

with $x = (n - n_{\rm sat})/n_{\rm sat}$, asymmetry $\beta = 1 - 2Y_p$ and

Nuclear Matter Parameters

• energy per nucleon near saturation:

$$\frac{E}{A}(n,\beta) = \frac{\varepsilon}{n} - m = -B_{\text{sat}} + \frac{K}{18}x^2 - \frac{K'}{162}x^3 + \beta^2\left(J + \frac{L}{3}x + \dots\right) + \dots$$

with $x = (n - n_{\rm sat})/n_{\rm sat}$, asymmetry $\beta = 1 - 2Y_p$ and

• nuclear matter parameters

- \circ n_{sat} saturation density
- \circ ${\it B}_{\rm sat}$ bulk binding energy
- $\circ K$ incompressibility
- $\circ K'$ skewness
- $\circ~J$ bulk symmetry energy
- $\circ~L$ slope of symmetry energy

DD2: Typel et al., Phys. Rev. C 81 (2010) 015803, refit of DD with experimental nucleon masses

Nuclear Matter Parameters

• energy per nucleon near saturation:

$$\frac{E}{A}(n,\beta) = \frac{\varepsilon}{n} - m = -B_{\text{sat}} + \frac{K}{18}x^2 - \frac{K'}{162}x^3 + \beta^2\left(J + \frac{L}{3}x + \dots\right) + \dots$$

with $x = (n - n_{\rm sat})/n_{\rm sat}$, asymmetry $\beta = 1 - 2Y_p$ and

• nuclear matter parameters

- $\circ n_{\rm sat} \Rightarrow$ size of nuclei
- \circ B_{sat}, J = a_S ⇒ general trend of binding energies cf. Bethe-Weizsäcker mass formula
- \circ K, K' \Rightarrow giant resonances, ratio surface tension/surface thickness
- \circ L \Rightarrow neutron skin thickness

DD2: Typel et al., Phys. Rev. C 81 (2010) 015803,

refit of DD with experimental nucleon masses

density dependence of symmetry energy $E_s(n)$ in nuclear matter $\frac{E}{4}(n,\beta) = E_0(n) + E_s(n)\beta^2 + \dots \qquad n = n_n + n_p \qquad \beta = (n_n - n_p)/n$

density dependence of symmetry energy $E_s(n)$ in nuclear matter

 $\frac{E}{A}(n,\beta) = E_0(n) + E_s(n)\beta^2 + \dots \qquad n = n_n + n_p \qquad \beta = (n_n - n_p)/n$

• symmetry energy at saturation $J = E_s(n_{sat})$ • slope coefficient $L = 3n \frac{d}{dn} E_s |_{n=n_{sat}}$

density dependence of symmetry energy $E_s(n)$ in nuclear matter $\frac{E}{A}(n,\beta) = E_0(n) + E_s(n)\beta^2 + \dots \qquad n = n_n + n_p \qquad \beta = (n_n - n_p)/n$

- symmetry energy at saturation $J = E_s(n_{sat})$ slope coefficient $L = 3n \frac{d}{dn} E_s |_{n=n_{sat}}$
- many efforts to determine $J = S_v$ and L experimentally

(J.M. Lattimer, A.W. Steiner, EPJA 50 (2014) 40)

(X. Viñas et al., EPJA 50 (2014) 27)

density dependence of symmetry energy $E_s(n)$ in nuclear matter

 $\frac{E}{A}(n,\beta) = E_0(n) + E_s(n)\beta^2 + \dots \qquad n = n_n + n_p \qquad \beta = (n_n - n_p)/n$

- symmetry energy at saturation $J = E_s(n_{sat})$ slope coefficient $L = 3n \frac{d}{dn} E_s |_{n=n_{sat}}$
- many efforts to determine $J = S_v$ and L experimentally

⁽M. Oertel, M. Hempel, T. Klähn, S. Typel, in preparation)

Symmetry Energy and Neutron Skins of Nuclei

• correlation: neutron skin thickness

$$\Delta r_{np} = S = \langle r_n^2 \rangle^{1/2} - \langle r_p^2 \rangle^{1/2}$$

- \Leftrightarrow derivative of neutron matter EoS
 - B.A. Brown, PRL 85 (2000) 5296
 - S. Typel and B. A. Brown, PRC 64 (2001) 027302

Symmetry Energy and Neutron Skins of Nuclei

• correlation: neutron skin thickness

$$\Delta r_{np} = S = \langle r_n^2 \rangle^{1/2} - \langle r_p^2 \rangle^{1/2}$$

- \Leftrightarrow derivative of neutron matter EoS
 - B.A. Brown, PRL 85 (2000) 5296
 - S. Typel and B. A. Brown, PRC 64 (2001) 027302
- \Leftrightarrow symmetry energy slope parameter L

(X. Viñas et al., Eur. Phys. J. A50 (2014) 27)

Symmetry Energy and Neutron Skins of Nuclei

• correlation: neutron skin thickness

$$\Delta r_{np} = S = \langle r_n^2 \rangle^{1/2} - \langle r_p^2 \rangle^{1/2}$$

⇔ derivative of neutron matter EoS
 B.A. Brown, PRL 85 (2000) 5296
 S. Typel and B. A. Brown, PRC 64 (2001) 027302
 ⇔ symmetry energy slope parameter L

- determine L from experimental measurement of Δr_{np}
 - parity violation in electron scattering
 PREX@Jefferson Lab, C.J. Horowitz et al.,
 PRC 63 (2001) 025501, PRC 85 (2012) 032501
 - coherent pion photoproduction
 MAMI@Mainz, C. Tarbert et al., PRL 112 (2014) 242502

(X. Viñas et al., Eur. Phys. J. A50 (2014) 27)

Symmetry Energy and Neutron Skins of Nuclei

• correlation: neutron skin thickness

$$\Delta r_{np} = S = \langle r_n^2 \rangle^{1/2} - \langle r_p^2 \rangle^{1/2}$$

⇔ derivative of neutron matter EoS
 B.A. Brown, PRL 85 (2000) 5296
 S. Typel and B. A. Brown, PRC 64 (2001) 027302
 ⇔ symmetry energy slope parameter L

- determine L from experimental measurement of Δr_{np}
 - parity violation in electron scattering
 PREX@Jefferson Lab, C.J. Horowitz et al.,
 PRC 63 (2001) 025501, PRC 85 (2012) 032501
 - coherent pion photoproduction MAMI@Mainz, C. Tarbert et al., PRL 112 (2014) 242502
- correlation based on mean-field models, low densities at nuclear surface
 ⇒ effects of correlations?

(see S. Typel, PRC 89 (2014) 064321)

(X. Viñas et al., Eur. Phys. J. A50 (2014) 27)

- density-dependent meson-nucleon couplings with parametrization DD2 (refit of parametrization DD with experimental nucleon masses)
 - S. Typel et al., Phys. Rev. C 81 (2010) 015803
- neutron matter EoS consistent with limits of chiral EFT(N³LO) calculations

I. Tews et al., PRL 110 (2013) 032504, T. Krüger et al., PRC 88 (2013) 025802

 density-dependent meson-nucleon couplings with parametrization DD2 (refit of parametrization DD with experimental nucleon masses)

S. Typel et al., Phys. Rev. C 81 (2010) 015803

 neutron matter EoS consistent with limits of chiral EFT(N³LO) calculations

I. Tews et al., PRL 110 (2013) 032504, T. Krüger et al., PRC 88 (2013) 025802

• density-dependent meson-nucleon couplings with parametrization DD2 (refit of parametrization DD with experimental nucleon masses)

S. Typel et al., Phys. Rev. C 81 (2010) 015803

• neutron matter EoS consistent with limits of chiral EFT(N^3LO) calculations

I. Tews et al., PRL 110 (2013) 032504, T. Krüger et al., PRC 88 (2013) 025802

L (MeV)

120

100

80

60

40

20

0

 \Diamond

• H&W

🗆 LS

O NL3

TM1

♦ TMA

DD2

SFHx

J (MeV)

• density-dependent meson-nucleon couplings with parametrization DD2 (refit of parametrization DD with experimental nucleon masses)

S. Typel et al., Phys. Rev. C 81 (2010) 015803

• neutron matter EoS consistent with limits of chiral EFT(N^3LO) calculations

I. Tews et al., PRL 110 (2013) 032504, T. Krüger et al., PRC 88 (2013) 025802

energy per nucleon 0 -10 DD2 symmetric nuclear matter -20 0.05 0.15 0.10 density n [fm⁻³]

[MeV] 20

E/A

10

neutron matte

0.20

χEFT (N³LO)

stellar matter

- strong and electromagnetic interaction
 ⇒ hadrons and leptons
- specific condition: charge neutrality

stellar matter

- strong and electromagnetic interaction
 ⇒ hadrons and leptons
- specific condition: charge neutrality
- additional hadronic degrees of freedom:
 o light nuclei (²H, ³H, ³He, ⁴He)
 - \circ heavy nuclei (A > 4), full table

stellar matter

- strong and electromagnetic interaction
 ⇒ hadrons and leptons
- specific condition: charge neutrality
- additional hadronic degrees of freedom:
 o light nuclei (²H, ³H, ³He, ⁴He)
 - heavy nuclei (A > 4), full table
 - experimental binding energies: AME 2012 (M. Wang et al., Chinese Phys. 36 (2012) 1603)
 - \circ extension: DZ10 predictions
 - (J. Duflo, A.P. Zuker, Phys. Rev. C 52 (1995) R23)
 - \Rightarrow shell effects included, not only average heavy nucleus

stellar matter

- strong and electromagnetic interaction
 ⇒ hadrons and leptons
- specific condition: charge neutrality
- additional hadronic degrees of freedom:
 - ∘ light nuclei (²H, ³H, ³He, ⁴He)
 - \circ heavy nuclei (A > 4), full table
 - experimental binding energies: AME 2012 (M. Wang et al., Chinese Phys. 36 (2012) 1603)
 - \circ extension: DZ10 predictions
 - (J. Duflo, A.P. Zuker, Phys. Rev. C 52 (1995) R23)
 - \Rightarrow shell effects included, not only average heavy nucleus
 - \circ considered as quasi-particles with scalar and vector potentials
 - o additional medium modifications of composite particles (mass shifts, internal excitations) ⇒ dissolution of nuclei, Mott effect
 - \circ NN scattering correlations included \Rightarrow correct low-density limit, virial EoS

Details: S. Typel et al., Phys. Rev. C 81 (2010) 015803, Eur. Phys. J. A 50 (2014) 17,

M.D. Voskresenskaya and S. Typel, Nucl. Phys. A 887 (2012) 42, M. Hempel et al., Phys. Rev. C 91 (2015) 045805

Low-Density Limit I

 comparison of generalized relativistic density functional with virial Equation of State (model-independent benchmark, depends only on experimental data)

Low-Density Limit I

- comparison of generalized relativistic density functional with virial Equation of State (model-independent benchmark, depends only on experimental data)
- only two-body correlations relevant at lowest densities
- \bullet fugacity expansion of grandcanonical thermodynamic potential Ω
 - \Rightarrow consistency relations with virial coefficients and zero-density meson-nucleon couplings $C_i = \Gamma_i^2/m_i^2$ $(i = \omega, \sigma, \rho, \delta)$

Low-Density Limit |

- comparison of generalized relativistic density functional with virial Equation of State (model-independent benchmark, depends only on experimental data)
- only two-body correlations relevant at lowest densities
- \bullet fugacity expansion of grandcanonical thermodynamic potential Ω
 - \Rightarrow consistency relations with virial coefficients and zero-density meson-nucleon couplings $C_i = \Gamma_i^2/m_i^2$ $(i = \omega, \sigma, \rho, \delta)$
 - \Rightarrow conventional mean-field models don't reproduce effect of correlations at very-low densities
 - $\Rightarrow \text{ introduce continuum correlations,} \\ \text{represented by effective resonance energies } E_{ij}(T) \ (i, j = n, p) \\ \text{with effective degeneracy factors } g_{ij}^{(\text{eff})}(T)$
 - \Rightarrow relativistic corrections

(M.D. Voskresenskaya and S. Typel, Nucl. Phys. A 887 (2012) 42)

Low-Density Limit II

comparison: p/n in different models for neutron matter (ideal gas: p/n = T)

STOS: H. Shen et al., Nucl. Phys. A 637 (1998) 435 (TM1)
SH: G. Shen et al., Phys. Rev. C 83 (2011) 065808 (FSUGold)
LS 220: J.M. Lattimer et al., Nucl. Phys. A 535 (1991) 331 (K = 220 MeV)

- concept applies to composite particles: clusters
 - \circ light and heavy nuclei
 - \circ nucleon-nucleon continuum correlations

- concept applies to composite particles: clusters
 o light and heavy nuclei
 - \circ nucleon-nucleon continuum correlations
- two major contributions to mass shifts

 $\Delta m_i = \Delta E_i^{(\text{strong})} + \Delta E_i^{(\text{Coul})}$

- concept applies to composite particles: clusters
 - \circ light and heavy nuclei
 - \circ nucleon-nucleon continuum correlations
- two major contributions to mass shifts

 $\Delta m_i = \Delta E_i^{(\text{strong})} + \Delta E_i^{(\text{Coul})}$

- strong shift $\Delta E_i^{(\text{strong})}$
 - \circ effects of strong interaction
 - Pauli exclusion principle: blocking of states in the medium
 - \Rightarrow reduction of binding energies
 - \Rightarrow dissolution at high densities: Mott effect
 - \Rightarrow replaces traditional approach: excluded-volume mechanism

- concept applies to composite particles: clusters
 - \circ light and heavy nuclei
 - \circ nucleon-nucleon continuum correlations
- two major contributions to mass shifts

 $\Delta m_i = \Delta E_i^{(\text{strong})} + \Delta E_i^{(\text{Coul})}$

- strong shift $\Delta E_i^{(\text{strong})}$
 - \circ effects of strong interaction
 - Pauli exclusion principle: blocking of states in the medium
 - \Rightarrow reduction of binding energies
 - \Rightarrow dissolution at high densities: Mott effect
 - \Rightarrow replaces traditional approach: excluded-volume mechanism
- electromagnetic shift $\Delta E_i^{(\text{Coul})}$ (in stellar matter)
 - electron screening of Coulomb field
 - \Rightarrow increase of binding energies

- light nuclei: parametrization from G. Röpke, simplified and modified for high densities and temperatures
- NN scattering states: as for deuteron

- light nuclei: parametrization from G. Röpke, simplified and modified for high densities and temperatures
- NN scattering states: as for deuteron
- heavy nuclei: simple parametrization
- general form: $\Delta m_i^{(\text{strong})} = f_i B_i^{(0)}$ with vacuum binding energy $B_i^{(0)}$ and shift function

$$f_i = \begin{cases} \begin{array}{ccc} x & \text{if} \quad x \leq 1 \\ x + \frac{(x-1)^3(y-1)}{3(y-x)} & \text{if} \quad x > 1 \text{ and } x < y \end{cases}$$

light nuclei:
$$x = \frac{n_i^{\text{(eff)}}}{n_i^{\text{(diss)}}(T)}, \quad y = \frac{n_{\text{sat}}}{n_i^{\text{(diss)}}(T)}$$

heavy nuclei:
$$x = \frac{n_i^{\text{(eff)}}}{n_{\text{sat}}}y, \quad y = 3 + \frac{28}{A}$$

effective density: $n_i^{(\text{eff})} = 2 \frac{Z_i Y_q + N_i (1 - Y_q)}{Z_i + N_i} n_b$

$$T = 0 \text{ MeV}$$

10

emission of light nuclei in heavy-ion collisions at Fermi energies

- determination of density and temperature
 - S. Kowalski et al. PRC 75 (2007) 014601
 - J. Natowitz et al. PRL 104 (2010) 202501
 - R. Wada et al. PRC 85 (2012) 064618

emission of light nuclei in heavy-ion collisions at Fermi energies

- determination of density and temperature
 - S. Kowalski et al. PRC 75 (2007) 014601
 - J. Natowitz et al. PRL 104 (2010) 202501
 - R. Wada et al. PRC 85 (2012) 064618
 - ⇒ thermodynamic conditions as in neutrinosphere of cc supernovae ("femtonovae")

emission of light nuclei in heavy-ion collisions at Fermi energies

- determination of density and temperature
 - S. Kowalski et al. PRC 75 (2007) 014601
 - J. Natowitz et al. PRL 104 (2010) 202501
 - R. Wada et al. PRC 85 (2012) 064618
 - ⇒ thermodynamic conditions as in neutrinosphere of cc supernovae ("femtonovae")
- particle yields ⇒
 chemical equilibrium constants

 $K_c[i] = n_i / (n_p^{Z_i} n_n^{N_i})$

L. Qin et al., PRL 108 (2012) 172701

chemical equilibrium constants of α particles from M. Hempel et al., PRC 91 (2015) 045805

emission of light nuclei in heavy-ion collisions at Fermi energies

- determination of density and temperature
 - S. Kowalski et al. PRC 75 (2007) 014601
 - J. Natowitz et al. PRL 104 (2010) 202501
 - R. Wada et al. PRC 85 (2012) 064618
 - ⇒ thermodynamic conditions as in neutrinosphere of cc supernovae ("femtonovae")
- particle yields ⇒
 chemical equilibrium constants

 $K_c[i] = n_i / (n_p^{Z_i} n_n^{N_i})$

L. Qin et al., PRL 108 (2012) 172701

- \Rightarrow mixture of ideal gases/NSE description not sufficient
- \Rightarrow medium effects/correlations important

chemical equilibrium constants of $\boldsymbol{\alpha}$ particles

from M. Hempel et al., PRC 91 (2015) 045805

range of variables

- temperature: 0.1 MeV $\leq T \leq 100$ MeV \Rightarrow 76 mesh points
- baryon density: $10^{-10} \text{ fm}^{-3} \le n_b \le 1 \text{ fm}^{-3} \Rightarrow 251 \text{ mesh points}$
- hadronic charge fraction: $0.01 \le Y_q \le 0.60 \Rightarrow 60$ mesh points

 \Rightarrow in total 1144560 mesh points

range of variables

- temperature: 0.1 MeV $\leq T \leq 100$ MeV \Rightarrow 76 mesh points
- baryon density: $10^{-10} \text{ fm}^{-3} \le n_b \le 1 \text{ fm}^{-3} \Rightarrow 251 \text{ mesh points}$
- hadronic charge fraction: $0.01 \le Y_q \le 0.60 \Rightarrow 60$ mesh points
- \Rightarrow in total 1144560 mesh points

information on

- thermodynamic properties (pressure, entropy, energies, chemical potentials)
- chemical composition (nucleons, leptons, light and heavy clusters)
- microscopic quantities (mean-field potentials)

range of variables

- temperature: 0.1 MeV $\leq T \leq 100$ MeV \Rightarrow 76 mesh points
- baryon density: $10^{-10} \text{ fm}^{-3} \le n_b \le 1 \text{ fm}^{-3} \Rightarrow 251 \text{ mesh points}$
- hadronic charge fraction: $0.01 \le Y_q \le 0.60 \Rightarrow 60$ mesh points
- \Rightarrow in total 1144560 mesh points

information on

- thermodynamic properties (pressure, entropy, energies, chemical potentials)
- chemical composition (nucleons, leptons, light and heavy clusters)
- microscopic quantities (mean-field potentials)

availability

 data tables will be released on CompOSE website (http://compose.obspm.fr)

Neutron Star Matter I

conditions: charge neutrality and β equilibrium

• hadronic charge fraction $Y_q = \sum_{i \neq e, \mu} Q_i n_i / n_b$

Neutron Star Matter I

conditions: charge neutrality and β equilibrium

• hadronic charge fraction $Y_q = \sum_{i \neq e, \mu} Q_i n_i / n_b$

Neutron Star Matter I

conditions: charge neutrality and β equilibrium

• hadronic charge fraction $Y_q = \sum_{i \neq e, \mu} Q_i n_i / n_b$

Neutron Star Matter II

conditions: charge neutrality and β equilibrium

• pressure

Neutron Star Matter III

conditions: charge neutrality and β equilibrium

• mass fractions of deuterons $X_d = 2n_d/n_b$ and α particles $X_\alpha = 4n_\alpha/n_b$

Neutron Star Matter IV

conditions: charge neutrality and β equilibrium

• mass fractions of tritons $X_t = 3n_t/n_b$ and helions $X_h = 3n_h/n_b$

Neutron Star Matter V

conditions: charge neutrality and β equilibrium

• mass fractions of heavy nuclei $X_A = X_{heavy} = \sum_{(A,Z),A>4} X_{(A,Z)}$

Neutron Star Matter V

conditions: charge neutrality and β equilibrium

• mass fractions of heavy nuclei $X_A = X_{heavy} = \sum_{(A,Z),A>4} X_{(A,Z)}$

Neutron Star Matter V

conditions: charge neutrality and β equilibrium

• mass fractions of heavy nuclei $X_A = X_{heavy} = \sum_{(A,Z),A>4} X_{(A,Z)}$

Neutron Star Matter VI

conditions: charge neutrality and β equilibrium

• average mass number of heavy nuclei $A_{av} = \langle A \rangle = \sum_{(A,Z),A>4} A X_{(A,Z)} / X_{heavy}$

Neutron Star Matter VI

conditions: charge neutrality and β equilibrium

• average mass number of heavy nuclei $A_{av} = \langle A \rangle = \sum_{(A,Z),A>4} A X_{(A,Z)} / X_{heavy}$

Neutron Star Matter VI

conditions: charge neutrality and β equilibrium

• average mass number of heavy nuclei $A_{av} = \langle A \rangle = \sum_{(A,Z),A>4} A X_{(A,Z)} / X_{heavy}$

Neutron Star Matter VII

conditions: charge neutrality and β equilibrium

 \bullet average neutron and proton numbers of heavy nuclei, $\langle N \rangle$ and $\langle Z \rangle$

Low-Temperature Limit

- \bullet gap in EoS tables between T=0 and $T_{\min}>0$
- phase transition from gas/liquid phase to solid phase
- correlations due to Coulomb interaction essential

Low-Temperature Limit

- \bullet gap in EoS tables between T=0 and $T_{\min}>0$
- phase transition from gas/liquid phase to solid phase
- correlations due to Coulomb interaction essential
- lattice-periodic Coulomb potential in crystal
- Wigner-Seitz approximation not sufficient

Low-Temperature Limit

- \bullet gap in EoS tables between T=0 and $T_{\rm min}>0$
- phase transition from gas/liquid phase to solid phase
- correlations due to Coulomb interaction essential
- lattice-periodic Coulomb potential in crystal
- Wigner-Seitz approximation not sufficient
- better: effective Coulomb contribution from Monte Carlo simulation (one-component plasma, OCP)
 ⇒ phase transition for plasma parameter

$$\Gamma = \frac{Z^{5/3} e^2}{a_e T} \approx 175 \qquad a_e = \left(\frac{3n_e}{4\pi}\right)^{1/3}$$

 improved description with model for crystal (to be studied)

DD2 (preliminary)

- high densities
 - \Rightarrow large baryon chemical potentials
 - \Rightarrow heavy baryons appear (hyperons, . . .)

- high densities
 - \Rightarrow large baryon chemical potentials
 - \Rightarrow heavy baryons appear (hyperons, . . .)
- extension of gRDF(DD2) model with hyperons

couplings to mesons:
 use SU(6) symmetry and
 potentials in nuclear matter at saturation

$$(U_{\Lambda} = -28$$
 MeV, $U_{\Sigma} = 30$ MeV, $U_{\Xi} = -18$ MeV)

- high densities
 - \Rightarrow large baryon chemical potentials
 - \Rightarrow heavy baryons appear (hyperons, . . .)
- extension of gRDF(DD2) model with hyperons

couplings to mesons:
 use SU(6) symmetry and
 potentials in nuclear matter at saturation

$$(U_{\Lambda} = -28$$
 MeV, $U_{\Sigma} = 30$ MeV, $U_{\Xi} = -18$ MeV)

- high densities
 - \Rightarrow large baryon chemical potentials
 - \Rightarrow heavy baryons appear (hyperons, . . .)
- extension of gRDF(DD2) model with hyperons
 - couplings to mesons: use SU(6) symmetry and potentials in nuclear matter at saturation $(U_{\Lambda} = -28 \text{ MeV}, U_{\Sigma} = 30 \text{ MeV}, U_{\Xi} = -18 \text{ MeV})$
 - \circ softening of EoS

 \Rightarrow maximum neutron star mass too low

- high densities
 - \Rightarrow large baryon chemical potentials
 - \Rightarrow heavy baryons appear (hyperons, . . .)
- extension of gRDF(DD2) model with hyperons
 - \circ couplings to mesons: use SU(6) symmetry and potentials in nuclear matter at saturation $(U_{\Lambda} = -28 \text{ MeV}, U_{\Sigma} = 30 \text{ MeV}, U_{\Xi} = -18 \text{ MeV})$
 - \circ softening of EoS
 - \Rightarrow maximum neutron star mass too low
 - \circ introduce ϕ meson
 - \Rightarrow repulsive interaction
 - \Rightarrow increase of maximum star mass

- high densities
 - \Rightarrow large baryon chemical potentials
 - \Rightarrow heavy baryons appear (hyperons, . . .)
- extension of gRDF(DD2) model with hyperons
 - \circ couplings to mesons: use SU(6) symmetry and potentials in nuclear matter at saturation $(U_{\Lambda} = -28 \text{ MeV}, U_{\Sigma} = 30 \text{ MeV}, U_{\Xi} = -18 \text{ MeV})$
 - \circ softening of EoS
 - \Rightarrow maximum neutron star mass too low
 - \circ introduce ϕ meson
 - \Rightarrow repulsive interaction
 - \Rightarrow increase of maximum star mass
- alternative solutions?

• transition to quark matter at low densities?

0...

• nucleon optical potential from p-A scattering

(S. Hama et al., PRC 41 (1990) 2737, E. Cooper et al., PRC 47 (1993) 297)

 not reproduced at high energies with RMF models (similar for nonrelativistic mean-field models)

- nucleon optical potential from p-A scattering

 (S. Hama et al., PRC 41 (1990) 2737, E. Cooper et al., PRC 47 (1993) 297)
 not reproduced at high energies with RMF models (similar for nonrelativistic mean-field models)

 extension of RMF approach with
 - higher-order derivative couplings
 ⇒ density and energy/momentum dependent
 self-energies (cf. Brueckner calculations)
- non-linear derivative coupling model
 - three versions with reproduction of DD2 saturation properties

- D2: Lorentzian energy dependence
- D3: exponential energy dependence

- nucleon optical potential from p-A scattering
 - (S. Hama et al., PRC 41 (1990) 2737, E. Cooper et al., PRC 47 (1993) 297)
 - not reproduced at high energies with RMF models (similar for nonrelativistic mean-field models)
- extension of RMF approach with higher-order derivative couplings
 ⇒ density and energy/momentum dependent self-energies (cf. Brueckner calculations)
- non-linear derivative coupling model
 - three versions with reproduction
 of DD2 saturation properties
 - \circ softening of EoS in D2/D3 models
 - reduction of maximum masses of neutron stars
 - (S. Antić, S. Typel, Nucl. Phys. A 938 (2015) 92)

- D2: Lorentzian energy dependence
- D3: exponential energy dependence

- nucleon optical potential from p-A scattering
 - (S. Hama et al., PRC 41 (1990) 2737, E. Cooper et al., PRC 47 (1993) 297)
 - not reproduced at high energies with RMF models (similar for nonrelativistic mean-field models)
- extension of RMF approach with higher-order derivative couplings
 ⇒ density and energy/momentum dependent self-energies (cf. Brueckner calculations)
- non-linear derivative coupling model

 three versions with reproduction
 of DD2 saturation properties
 softening of EoS in D2/D3 models
 - reduction of maximum masses of neutron stars
 - (S. Antić, S. Typel, Nucl. Phys. A 938 (2015) 92)
- fit of model parameters to properties of finite nuclei needed (in progress)

D3: exponential energy dependence

stellar matter: correlations in many-body system essential
 ⇒ clustering, modification of chemical composition

- stellar matter: correlations in many-body system essential
 ⇒ clustering, modification of chemical composition
- generalized relativistic density functional
 - o extension of RMF models with density-dependent couplings, well-constrained parameters
 o extended set of constituents: explicit cluster degrees of freedom, quasiparticle description
 o medium-dependent properties of composite particles
 ⇒ formation and dissolution of clusters, correct limits

EoS for Astrophysical Applications - 30

- stellar matter: correlations in many-body system essential
 ⇒ clustering, modification of chemical composition
- generalized relativistic density functional
 - o extension of RMF models with density-dependent couplings, well-constrained parameters
 o extended set of constituents: explicit cluster degrees of freedom, quasiparticle description
 o medium-dependent properties of composite particles
 ⇒ formation and dissolution of clusters, correct limits
- applications:
 - tables with details of equation of state of stellar matter (thermodynamic properties, chemical composistion, . . .)
 ⇒ astrophysical simulations

- stellar matter: correlations in many-body system essential
 ⇒ clustering, modification of chemical composition
- generalized relativistic density functional
 - extension of RMF models with density-dependent couplings, well-constrained parameters
 extended set of constituents: explicit cluster degrees of freedom, quasiparticle description
 medium-dependent properties of composite particles
 - \Rightarrow formation and dissolution of clusters, correct limits
- applications:
 - o tables with details of equation of state of stellar matter (thermodynamic properties, chemical composistion, . . .)
 ⇒ astrophysical simulations
- outlook:
 - preparation of global EoS table (\Rightarrow CompOSE)
 - \circ extension of model with quarks (\Rightarrow hadron-quark phase transition)
 - \circ treatment of liquid/gas solid phase transition (\Rightarrow crystallization)