PWNe at the Galactic Centre

Oľ

some GC stuff @ MODE workshop - season 3 ep. 1

R. Terrier, A. Lemière, L. Jouvin et al. APC

PWN in the inner 200 pc

(Crocker+11, Longmore+13, Ponti+15)

- Sustained star formation activity: 0.03-0.1 M_o/yr
- Associated SNR rate : $10^{-3} 3 \times 10^{-4} \text{ yr}^{-1}$
- Expected number of PWNe produced in 100 kyr: 30 100
- Expected number of PWNe in the inner 20 pc (neglecting kicks): ~ 20

PWN candidates seen by Chandra

- Chandra survey of the GC : 34 non thermal filaments in X-rays
- Up to 20 PWNe candidates

Muno et al. (2008), Johnson et al. (2009)

Johnson et al. (2009)

• Most are found in the inner 30 pc

PWN candidates seen by Chandra

Johnson et al. (2009)

PWN candidates seen with NuSTAR

- 3 PWN candidates detected above 40 keV!
- Unlikely PWN:
 - electron lifetime ~few years
- Interacting SNR shock?
 Nynka et al (2015)
- Magnetic flux tube Zhang et al (2015)

Mori et al. (2015)

TeV PWN in the GC?

G359.95-0.04 & HESS J1745-290?

 HESS J1745-290 position consistent PWN candidate G359.95-0.04 located at 0.7" (0.3 pc) from Sgr A*

Wang et al. (2006), HESS collab (2010)

• Can it power the TeV source?

IC dominated PWNe

- If radiation energy density is large compared to magnetic energy density, radiative losses are dominated by IC
- Energy dependent losses due to Klein-Nishina effects will alter the electron spectrum
- X-ray spectra harder than TeV ones

from Hinton & Aharonian (2007)

IC dominated PWNe

- If radiation energy density is large compared to magnetic energy density, radiative losses are dominated by IC
- Energy dependent losses due to Klein-Nishina effects will alter the electron spectrum
- X-ray spectra harder than TeV ones

from Hinton & Aharonian (2007)

G359.95-0.04 & HESS J1745-290?

- At 0.3pc from Sgr A^{*}, inside central star cluster (L > 10^{41} erg/s)
- Huge radiation energy density:
 - 5000 eV/cm³ FIR field, 5 x 10⁴ eV/cm³ opt/UV field (e.g. Kistler 2015)

SED well reproduced with a 105 µG field Hinton & Aharonian (2007) But ambient magnetic field deduced from magnetar Faraday rotation: B > 1mG @ 0.3рс Eatough et al (2013) Cannot recover correct SED by moving PWN position along line of sight Kistler (2015) Note that Faraday rotation can take place in lower density medium: $B > 50 \mu G$

Kravchenko et al (2015)

Hinton & Aharonian (2007)

Diffuse VHE emission in the inner 200 pc

- Emission from the bright molecular complexes and peak around GC
- Produced by excess of > TeV CRs in the region
- A gradient of CR peaking at the GC position
- Injection of CRs by a stationary source at the GC? HESS collab (2016)

See presentation by L. Jouvin

Galactic longitude HESS collab (under review)

Iterative fitting of VHE emission

Components included:

- CMZ: CS x gaussian (53% flux, ~150 pc extension)
- Large Scale gaussian with larger latitude coverage (33% flux)
- Central Component (CC)
 0.1° gaussian at GC position
 (12% flux, ~15 pc ext)
- Pointlike source HESS J1746-285

HESS collab (under review)

- Point source HESS J1746-285 located at the centre of the radio arc IR bubble and I on the edge of the radio arc
- Arc bubble: a kind of super bubble associated to the Quintuplet cluster?

- Point source HESS J1746-285 well coincident with PWN candidate G0.13-0.11
 - Centre of IR bubble: progenitor connected to Quintuplet cluster (at 10 pc)
- PWN has to be illuminated by cluster and ionized material in the bubble

- Estimated radiation field: opt ~200 eV/cm³ IR ~ 50-100 eV/cm³
- Hard spectrum in X-rays because of energy dependent IC cooling
- X-rays & TeV well reproduced for a steady \dot{E} = 2 10^{35} erg/s injection with ambient B \sim 50 μG

- Relic scenario with $\dot{E}_0 = 7 \ 10^{38} \text{ erg/s}$, $\tau_0 = 500 \text{ yr}$ and age 30 kyr reproduces only partly GeV spectrum
- Origin of GeV emission?

Contribution of PWNe to VHE diffuse emission?

- If GC environment is such that evolved PWNe have typical ratios of $L_{\gamma}/L_X \sim 2$ (as G0.13-0.11),
 - What is their total contribution to diffuse emission?
- ~15 PWNe in the inner 15 pc radius:
 - total expected luminosity $L_{\gamma} \sim 5 \ 10^{34} \text{ erg/s}$
 - Central Component luminosity $L_{\gamma} = 4.5 \ 10^{34} \text{ erg/s}$
- Good luminosity match but strong KN losses expected:
 spectrum should show sharp cutoff above a few TeV

Contribution of PWNe to VHE diffuse emission?

- No such spectral cutoff is visible in the inner regions
- No strong contribution of PWNe to diffuse emission
- Is G0.13-0.11 a special case?

Consistency of empirical model with 1/r profile

If CMZ & central component due to CR compute over density around the GC

Measured intensity ratio: CC / total ridge = 0.12

Expected intensity ratio (for a 1/r CR distribution and uniform gas): CC / total ridge = 0.10 $\int dV \ 1/r$

Central Component (~15 pc radius) is well explained by gradient of CR in ISM (with ~1/r profile): a stationary CR source at the GC?

Conclusions

- Up to 20 PWNe candidates in the GC (most in the inner 30pc)
 - X-ray morphology: ram pressure confined?
- Because of high radiation field environment, several should be bright at TeV
- The TeV GC source is a possible case (although the ambient B field might be too high)
- The radio Arc PWN G0.13-0.11 is detected on top of diffuse emission by H.E.S.S.
 - Consistent with emission from $\dot{E} \sim 2 \times 10^{35}$ erg/s pulsar
 - Coincident GeV emission does not seem to be connected with PWN itself
- Combined VHE emission of all PWNe might contribute significantly to excess of diffuse emission visible in the central 30 pc
- But this would imply a sharp cutoff at multi-TeV energies that is not observed