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Neutron Stars

First neutron star detected almost 50 years ago. Still, the fundamental
properties of matter in the core of neutron stars remain largely
uncertain.

No accurate radius determination!

Optical image X-ray image
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Sample of Neutron Star Equations of State
Bauswein, Janka, Hebeler & Schwenk (2012)
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Constraints on Neutron Star Radii

Main methods in EM spectrum:

*Thermonuclear X-ray bursts (photospheric radius expansion)
‘Burst oscillations (rotationally modulated waveform)
*Fits of thermal spectra to cooling neutron stars

*khZ QPOs in accretion disks around neutron stars

Pericenter precession in relativistic binaries (double pulsar J0737)



Constraints from X-ray binaries / bursts
Oezel & Freire (2016)
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The combined constraints at the 68% confidence level over the neutron star mass and radius obtained from
(Left) all neutron stars in low-mass X-ray binaries during quiescence (Right) all neutron stars with
thermonuclear bursts. The light grey lines show mass-relations corresponding to a few representative
equations of state (see Section 4.1 and Fig. 7 for detailed descriptions.)



Constraints on Neutron Star Radii

Main methods in EM spectrum:

*Thermonuclear X-ray bursts (photospheric radius expansion)
*Burst oscillations (rotationally modulated waveform)

Fits of thermal spectra to cooling neutron stars

*khZ QPOs in accretion disks around neutron stars

*Pericenter precession in relativistic binaries (double pulsar J0737)

Main methods in GW spectrum:

e Tidal effects on waveform during inspiral phase of NS-NS mergers

e Tidal disruption in BH-NS mergers

e Oscillations in post-merger phase of NS-NS mergers



EOS from Inspiral Signal

Read et al. (2013)

The last part of the inspiral signal carries the imprint of the
quadrupole tidal deformability A := —Qii/Ei]. =2/3k, R
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Dimensionless

tidal
deformability:

y R\’
gy
o (3)

With an aLLIGO
class detector:

AR/R ~ 10 %
@100 Mpc
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Revealing the EOS

in-spiral mass range
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Outcome of Binary NS Mergers

Most likely range of total mass for binary system:

2.4Mg < Mio: < 3Mog

Because nonrotating M.,... > 2M (as required by observations),
a long-lived (t >10ms) remnant is likely to be formed.

The remnant is a hypermassive neutron star (HMNS), supported
by differential rotation, with a mass larger than the maximum
mass allowed for uniform rotation.



Simulations of BNS mergers
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Oscillations of Neutron Stars
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3. inertial modes (r-modes)

1. f-modes / p-modes

fluid modes restored by pressure (=1
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restored by the Coriolis force in rotating stars
4. w-modes

spacetime modes (similar to black hole modes)

GW-detection: f-modes: stable oscillations

f-mode / r-mode CFS-instabilities



Post-Merger Gravitational Waves

NS, Bauswein, Zagkouris, Janks (2011)
The GW signal can be divided into three distinct phases:
inspiral, merger and post-merger ringdown. (@40Mpc)
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Post-Merger GW Spectrum

Several peaks stand above the aLIGO/VIRGO or ET sensitivity
curves and are potentially detectable. How are these produced?
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Lattimer-Swesty 220 EOS 1.35+1.35
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Lattimer-Swesty 220 EOS 1.35+1.35
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Tracing Individual Particles
Bauswein, NS (2015)

Using SPH it is simple to trace the paths of particles that originally
belonged to one or the other star
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Spiral Deformation
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Lattimer-Swesty 220 EOS 1.35+1.35
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Time-Frequency Analysis
Clark, Bauswein, NS, Shoemaker (2016)
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linear + quasi-linear + nonlinear




linear + quasi-linear + nonlinear




linear + quasi-linear + nonlinear




linear + quasi-linear + nonlinear




linear + quasi-linear + nonlinear




Three Types of Post-Merger Dynamics

Bauswein, NS (2015)
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Asteroseismology
Bauswein, NS (2015)
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GW Asteroseismology
Andersson & Kokkotas (1998)
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Frequency-Radius Relation in BNS Remnants
Bauswein, Janka, Hebeler & Schwenk (2012)

freak cOrrelates very well with the radius @ 1.6 Msun, if Mo is
known from inspiral.
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Radius Determination from Post-Merger Signal

Bauswein, Janka, Hebeler & Schwenk (2012)

freak cOrrelates very well with the radius @ 1.6 Msun, if Mo is
known from inspiral.
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Revealing the EOS

in-spiral mass range
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Extrapolating to Larger Masses
Bauswein, NS, Janka (2014)
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Extrapolating to Larger Masses
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M_thres vs. M_max correlation
Bauswein, Baumgarte, Janka PRL (2013)

The threshold mass is related to the maximum TOV mass as

Mthres =k - Mmax

where k is dependent on the compactness.
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Breaking the EOS Degeneracy

s375




Detectability

Clark, Bauswein, NS, Shoemaker (2016)
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PLANNED UPGRADES AND NEW DETECTORS

Clark, Bauswein, NS, Shoemaker (2016)

LIGO A+ [74 75] a set of upgrades to the existing LIGO facilities, including
frequency-dependent squeezed light, improved mirror coatings and potentially
increased laser beam sizes. Noise amplitude spectral sensitivity would be
improved by a factor of ~ 2.5-3 over 1 4kHz. A+ could begin operation as
early as 2017-18.

LIGO Voyager (LV) [75] a major upgrade to the existing LIGO facilities, including
higher laser power, changes to materials used for suspensions and mirror
substrates and, possibly, low temperature operation. LV would become
operational around 2027-28 and offer noise amplitude spectral sensitivity
improvements of ~ 4.5-5 over 1-4 kHz.

LIGO Cosmic Explorer (CE) [75] a new LIGO facility rather than an upgrade,
with operation envisioned to commence after 2035, probably as part of a network
with LIGO Voyager. In its simplest incarnation, Cosmic Explorer would be a
straightforward extrapolation of A4 technology to a much longer arm length of
40 km, referred to as CE1 which would be ~ 14 x more sensitive than aLIGO over
1-4kHz. An alternative extrapolation is that of Vovager technology to the 40 km
arm length, referred to as CE2. CE2 is only ~ 8x more sensitive than aLIGO
for the frequency range of interest in this study. For simplicity, we consider only
CELl.

Einstein Telescope (ET-D) [76, 77] the European third-generation GW detector.
In this work, we consider the ET-D configuration which is comprised of two
individual inteferometers where one targets low frequency sensitivity and the
other high frequency sensitivity. Both interferometers will be of 10km arm
length and housed in an underground facility. Furthermore, the full observatory
will consist of three such detectors in a triangle arrangement. ET-D is ~ 8x
more sensitive than aLLIGO over 1-4kHz. Due to the network configuration (i.e.,
the alignment of the component instruments) the effective sensitivity of ET-D is
~ 18% higher than that for a single ET-D detector.



Expected Detection Rate
Clark, Bauswein, NS, Shoemaker (2016)

Single detector, ideal matched-filtering, SNR threshold=5

Instrument  SNRg,p Dyor (Mpc) Met (year")

aLIGO 2.995%5 29.89335] 0.01903

A+ 7.8%55 | 78.89%'%"  0.1357
LV 140613 | 140,561 04103
ET-D 26.65503° | 266.5250550  2.817%

CE 41.503535 | 414.623353"  10.5935%°



Coherent Wave Burst Analysis
Clark, Bauswein, Cadonati, Janka, Pankow, NS (2014)

A simple burst algorithm only recovers ~40% of the input signal.
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Principal Component Analysis (PCA)

Clark, Bauswein, NS, Shoemaker (2016)
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Principal Component Analysis (PCA)

Clark, Bauswein, NS, Shoemaker (2016)
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Principal Component Analysis (PCA)

Clark, Bauswein, NS, Shoemaker (2016)
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Our PCA template extracts >90% of signal power compared to
only 40% when using simple burst analysis.
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PCA Reconstruction of signal

Clark, Bauswein, NS, Shoemaker (2016)
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PCA Reconstruction of signal
Clark, Bauswein, NS, Shoemaker (2016)
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Our PCA template extracts >90% of input signal. Even with
mean+1 PC, it is >80% (compared to 40% for a burst analysis).



Summary

e Post-merger GW asteroseismology 1s a viable method for
constraining the EOS

e Neutron star radil can be measured to 400m (~3%)
maximum uncertainty

e Principal Component Analysis (PCA) sufficient to reach
>90% of optimal signal

e Realistic detection rates possible with upgraded LIGO
Voyager by 2027.
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