MODE Workshop 20 May 2016

nma-ray Space Telescope Phase resolved spectral analysis of Fermi-LAT millisecond pulsars . Trends with energy . Trends with phase

N. Renault-Tinacci

In collaboration with : I. Grenier, A.K. Harding, JM Casandjian, M.E. DeCesar, L. Guillemot, T.J. Johnson, Q. Remy, C. Venter.

The Fermi-LAT era

- Growing γ-ray pulsar class
 - (≈45% of detected pulsars)
- Sharp MSP γ-ray profiles
 - \rightarrow thin gaps \rightarrow high pair densities
 - similar to young pulsars

- More compact magnetospheres :
 - same $B_{LC} \rightarrow$ similar acceleration & radiation processes
- MSP larger stability
- But MSPs are fainter pulsars

- Why MSPs ?
 - Growing γ-ray pulsar class
 - Clues indicating same acceleration/radiation processes in MSPs as in young pulsar magnetospheres (similar γ-ray profiles, same B near the light cylinder)
 - More stable (but fainter)

1st systematic phase-resolved spectral analysis of γ-ray MSPs

- Where do the acceleration and γ-ray emission originate in the magnetosphere ?
- Acceleration in thin screened gaps or in thick, pairstarved zones?
- Which γ radiation processes involved?

Data & Analyses

Preliminary

- Data selection :
 - Pass 7 Reprocessed Fermi-LAT data
 - 60 months (August 2008 August 2013)
 - $50 \text{ MeV} < \text{E}_{\text{phot}} < 170 \text{ GeV}$ -
- Fixed-count binned lightcurves :
 - Tempo2
 - photon selection
 - E_{phot} > 200 MeV and θ_{phot} < PSF_{68%}(E_{phot})
 - separation of 4 MSP classes based on morphology
 - phase interval definition (Peak cores, wings, bridge,...)
- Spectral analysis :
 - total emission and in phase intervals
 - iterative extraction of pulsed flux in energy bins (no need for an input spectral shape)
- Subsequent spectral characterization: lacksquare
 - bivariate max-likelihood fit of PL Exponential Cut-Off

$$\frac{dN}{dE} = N \left(\frac{E}{E_0}\right)^{-\Gamma} \exp\left(-\frac{E}{E_{out}}\right)$$

- local quadratic fit of SED apex energy
- energy flux $G_{>50MeV}$ and luminosity $L_{,}(E>50 \text{ MeV})$

N. Renault-Tinacci

MSP sample

		Pulsar name	l	b	Р	<i>P</i>	Ė	Distance	light-curve morphology
			(deg)	(deg)	(ms)	$(10^{-20} \mathrm{s}\mathrm{s}^{-1})$	$(10^{26} \mathrm{W})$	(kpc)	
		J0030+0451	113.14	-57.61	4.87	1.07	3.65	$0.28^{0.10}_{0.06}$	3 peaks
		J0034-0534	111.49	-68.07	1.88	0.49	28.93	$0.54_{0.10}^{0.11}$	3 peaks
		J0102+4839	124.87	-14.17	2.96	1.17	17.81	$2.32_{0.43}^{0.50}$	dome+peak
		J0218+4232	139.51	-17.53	2.32	7.66	242.31	$2.64^{1.08}_{0.64}$	ramp
• 2	 25 millisecond pulsars bright bright enough wrt background 	J0340+4130	153.78	-11.02	3.30	0.66	7.25	$1.73_{0.30}^{0.29}$	2 peaks
		J0437-4715	253.39	-41.96	5.76	1.43	2.95	$0.156_{0.001}^{0.001}$	ramp
		J0613-0200	210.41	-9.30	3.06	0.88	12.07	$0.9^{0.4}_{0.2}$	ramp
		J0614-3329	240.50	-21.83	3.15	1.76	22.22	$1.90_{0.35}^{0.44}$	2 peaks
		J1124-3653	284.10	22.76	2.41	0.58	16.22	$1.72_{0.36}^{0.43}$	ramp
		J1231-1411	295.53	48.39	3.68	0.79	6.22	$0.44_{0.05}^{0.05}$	3 peaks
•	Good sampling of the	J1311-3430	307.68	28.18	2.56	2.09	49.18	$1.4_{0.3}^{0.3}$	2 peaks
M: - - -	MSP population in	J1514-4946	325.25	6.81	3.59	1.13	9.62	$0.94_{0.12}^{0.11}$	2 peaks
	- direction (L b)	J1614-2230	352.64	20.19	3.15	0.34	4.30	$0.77_{0.05}^{0.05}$	3 peaks
	- direction (i, b)	J1658-5324	334.87	-6.63	2.44	1.08	29.28	$0.93_{0.13}^{0.11}$	ramp
		J1744-1134	14.79	9.18	4.07	0.77	4.52	$0.42_{0.02}^{0.02}$	dome+peak
	- energetics (E, B_{LC} ,) - geometry (α_B , ζ_{view})	J1810+1744	44.64	16.81	1.66	0.46	39.93	$2.00_{0.28}^{0.31}$	ramp
		J1902-5105	345.65	-22.38	1.74	0.88	66.00	$1.18_{0.21}^{0.22}$	3 peaks
		J1939+2134	57.51	-0.29	1.56	10.68	1110.82	$3.56_{0.35}^{0.35}$	2 peaks
		J1959+2048	59.20	-4.70	1.61	1.19	112.74	$1.4^{1.0}_{0.5}$	dome+peak
		J2017+0603	48.62	-16.03	2.90	0.81	13.14	$0.9^{0.4}_{0.4}$	3 peaks
		J2043+1711	61.92	-15.31	2.38	0.38	11.10	$1.76_{0.32}^{0.15}$	2 peaks
		J2124-3358	10.93	-45.44	4.93	1.10	3.63	$0.30_{0.05}^{0.07}$	ramp
		J2214+3000	86.86	-21.67	3.12	1.30	16.89	$0.60_{0.31}^{0.31}$	dome+peak
		J2241-5236	337.46	-54.93	2.19	0.87	32.70	$0.51_{0.08}^{0.08}$	dome+peak
		J2302+4442	103.40	-14.00	5.19	1.38	3.91	$1.19_{0.23}^{0.09}$	3 peaks

MSP spectral sequence

- Softening with B_{LC} (and Ė)
 - Γ constant with B_{LC} rejected at >10σ
- Shift in E_{apex} with \dot{E} (and B_{LC})
 - Curvature testing (« pairwise slope statistics », Abrevaya et Jiang 2003)

Space Telescope

MSP spectral sequence

28.5

Preliminary

28

• Toy model of curv.-radiation spectra:

Samma-ray

- primaries near the light cylinder with various $\Gamma_{\rm max}$ Lorentz factors
- curv. radius = R_{LC} (Hirotani 2011)
- cannot reproduce the E_{apex} vs Edot and Γ vs B_{LC} trends
- → Additional softer component required N. Renault-Tinacci

- Synchroton component from primary pairs
 - too high energy γ rays for secondary pairs
 - for the SG (Harding et al. 2008) or OG models (Takata et al. 2008)
- Smooth transition layer from $E_{//} \neq 0$ to $E_{//}$
 - $=0 \rightarrow CR$ at a few hundred MeV
 - for the OG (Wang et al. 2010) or FIDO models (Kalapotharakos 2014)

radio and γ-ray alignment

- Multi-peak pulsars : softening when radio and γ-ray peaks aligned
- → Synchrotron component from pairs gaining pitch angle by cyclotron resonant absorption of co-located radio photons (Harding et al. 2008) ?

Dermi

•

Maximum Lorentz factor
 estimation from E_{cut}

Space Telescope

- for the total emission
- assuming curv. radiation
- with curv. radius = R_{LC} (Hirotani 2011)

Narrow Γ_{max} distribution

around 10⁷

$$\Gamma_{max} = \left(E_{cut}\frac{2}{3}\frac{R_{LC}}{\hbar c}\right)^{1/3}$$

- The brighter the core, the harder the SED (lower Γ), the higher the apex energy
 - Irrespective of the peak order
- Expected if dominant curv. radiation

sermi.

- Inconsistent with classical OG/SG models (harder 2nd peak)
- Consistent with new FIDO model (Kalopotharakos et al. 2014)
- Potential diagnostic to discriminate 1- vs 2-pole emission models

Different emission regions/regimes

- Total emission
 - Trend and dispersion consistent with 2PC

 $L_{\gamma} = 4\pi G_{>50 \text{MeV}} d^2$

• But :

Space Telescope

- Multi-peaks : $L_{\gamma} \propto \sqrt{\dot{E}} \rightarrow$ screened thin gap near last closed B line dominates the output
- Ramps : $L_{\gamma} \propto \dot{E} \rightarrow$ unscreened thick region partially (?) filling the open magnetosphere

Ramps: uniform emission region/regime

Dermi

• No evolution across phase \rightarrow single emission region?

Different emission regions/regimes

Samma-ray

Different emission regions/regimes

Samma-ray

Conclusions

- need to re-think the classical picture of thin caustic gaps/wide unscreened regions
 - possibly co-existing in the magnetosphere and both contributing to the observed pulsed emission
 - Impact of the morphology/geometry ?
- MSP spectral sequence with E :
 - potential influence of radio emission
 - need for an additional soft radiation component
 - synchrotron radiation from primary pairs and/or CR smooth transition layer in E_{//}
- The brighter the core, the higher the apex energy, the harder the SED
 - CR dominant and potential diagnostic for 1 or 2 emission poles
- Softer emission and lower E_{apex} outside the main peaks
- Perspectives
 - confirm trends with 8 years of Pass 8 data and with larger MSP sample
 - same analyses for young pulsars to accompany future pulsar catalog

Thank you for your attention

BACK-UP

MSP sample

- 25 millisecond pulsars
 - Bright
 - Bright enough wrt background
- Good sampling of the MSP population in
 - Spatial (l, b)
 - Timing (P, Pdot)
 - Energetics (Ė, B_{LC}, ...)
 - Obliquities (α , ζ)

- Millisecond pulsars
 - Young pulsars
 - Studied MSPs

Second Fermi-LAT Pulsar Catalog, Abdo et al. 2013

Detailled analysis protocol

Space Telescope

Spectral behaviour across phase (multi-peak)

∍ermi

