

MODE, Mai, 19th, 2016

Empirical nuclear equation of state and impact on NS and CC-SN

Jérôme Margueron, IPN Lyon

Empirical EoS \rightarrow guided by data, with minimal theoretical assumption.

Work in collaboration with R. Casali, F. Gulminelli, A. Fantina and P. Blottiau

Does NS observation data could provide the nuclear EoS?

Recent attempts to deduce the nuclear EoS from:

- thermal X-rays,
- X-ray pulsations,
- Photospheric expansion,
- Etc...
 - ... NS merging (see talk of Nick)

Hebeler 2013 Ozel 2010, 2012, 2014 Steiner 2010, 2013 Etc...

EQUATION OF STATE AND NEUTRON STAR PROPERTIES CONSTRAINED BY NUCLEAR PHYSICS AND OBSERVATION Astro. J. 773 (2013)

F 10

0 10

K. HEBELER¹, J. M. LATTIMER², C. J. PETHICK^{3,4}, AND A. SCHWENK^{5,6}

For $\rho < \rho_1$

$$\epsilon(\bar{n}, x)T_0 = \frac{1}{5} [x^{5/3} + (1-x)^{5/3}](2\bar{n})^{2/3} - [(2\alpha - 4\alpha_L) \\ \times x(1-x) + \alpha_L]\bar{n} + [(2\eta - 4\eta_L)x(1-x) + \eta_L]\bar{n}^{\gamma},$$

For $\rho > \rho_1$ Piecewise polytropes.

3

Fractional power of the density
Polytropes → non-analytic

ipnl

Needs for simple parameterization of the EoS

- For the analysis of NS observation (thermal X-rays, X-ray pulsations, etc...)
 - Extraction of NS radius
- For implementation in hydro-dynamical codes (CCSN, NS mergers, etc...)
- For Heavy Ion Collisions and analysis of the results

Empirical parameters

The empirical parameters code the bulk properties of the nuclear EoS.

Taylor expansion of the EoS around ρ_0 (theory):

$$\frac{E}{A} = (E_0 + E_{sym}\delta^2) + L_{sym}x\delta^2 + \frac{1}{2}(K_0 + K_{sym}\delta^2)x^2 + \dots$$
$$x = \frac{\rho - \rho_0}{3\rho_0} \qquad I = \delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$$

Phenomenological mass formulae (experiment):

• LD formula:
$$B(Z, A) = E_0 + E_{sym}I^2 + E_{surf}A^{-1/3} + \dots$$

- Droplet formula: including skin contribution
- Compressible LD formula: $B(Z, A) = \frac{E}{A}(\rho, I) + E_{surf}A^{-1/3} + \dots$

$$\rho(A) = \rho_0 (1 - \frac{3L_{sym}}{K_0} I^2)$$

ipnl

Experimental determination of the empirical parameters

- E_0 , E_{sym} : From fit of LDM through the nuclear chart, or from DFT adjustment.
- K₀: from ISGMR [Blaizot, 1980]
 - \rightarrow better correlated to M_c [Khan, J.M. 2012]
- L_{sym}, K_{sym}: more difficult

ipn

- Neutron skin in Pb,
- ISGMR in neutron rich nuclei (Ksym, K_{τ}) [Garg+2010]

Measurement of neutron skin:

With strong probes:

- p-N elastic diffusion
- π , α , d scattering
- π photoproduction
- Heavy-ion collisions
- Electric dipole polarizability

With weak probes:

• PREX / C-REX

Model		$ ho_0$	E_0	K_0	Q_0	Z_0	E_{sym}	L_{sym}	K_{sym}	Q_{sym}	Z_{sym}
		${\rm fm}^{-3}$	${\rm MeV}$	${\rm MeV}$	${\rm MeV}$	MeV	${\rm MeV}$	${\rm MeV}$	${\rm MeV}$	MeV	MeV
Skyrme	Average	0.1586	-15.91	251.68	-300.20	1178.35	31.22	53.52	-130.15	316.68	-1890.99
	σ	0.0040	0.21	45.42	157.81	848.47	2.03	31.06	132.03	218.23	1191.23
RMF	Average	0.1494	-16.24	267.99	-1.94	5058.30	35.11	90.20	-4.58	271.07	-3671.83
	σ	0.0025	0.06	33.52	392.51	2294.07	2.63	29.56	87.66	357.13	1582.34
RHF	Average	0.1540	-15.97	248.06	389.17	5269.07	33.97	90.03	128.16	523.29	-9955.49
	σ	0.0035	0.08	11.63	350.44	838.41	1.37	11.06	51.11	236.80	4155.74
Average		0.1540	-16.04	255.91	29.01	3835.24	33.43	77.92	-2.19	370.34	-5172.77
σ	_	0.0051	0.20	34.39	424.59	2401.14	2.64	30.84	142.71	298.54	4362.35

$$e_{IS}(\rho) = E_0 + \frac{K_0}{2} x(\rho)^2 + \frac{Q_0}{6} x(\rho)^3 + \dots,$$

$$e_{IV}(\rho) = E_{sym} + L_{sym} x(\rho) + \frac{K_{sym}}{2} x(\rho)^2 + \frac{Q_{sym}}{6} x(\rho)^3 + \dots,$$

$$\begin{cases} \rho = \rho_n + \rho_p \\ \delta = (\rho_n - \rho_p)/\rho \end{cases}$$

ipnl

		1 % acc	curacy								
Model		$ ho_0$	E_0	K_0	Q_0	Z_0	E_{sym}	L_{sym}	K_{sym}	Q_{sym}	Z_{sym}
		${\rm fm}^{-3}$	${\rm MeV}$	MeV	MeV	MeV	${\rm MeV}$	${\rm MeV}$	${\rm MeV}$	MeV	${ m MeV}$
Skyrme	Average	0.1586	-15.91	251.68	-300.20	1178.35	31.22	53.52	-130.15	316.68	-1890.99
	σ	0.0040	0.21	45.42	157.81	848.47	2.03	31.06	132.03	218.23	1191.23
RMF	Average	0.1494	-16.24	267.99	-1.94	5058.30	35.11	90.20	-4.58	271.07	-3671.83
	σ	0.0025	0.06	33.52	392.51	2294.07	2.63	29.56	87.66	357.13	1582.34
RHF	Average	0.1540	-15.97	248.06	389.17	5269.07	33.97	90.03	128.16	523.29	-9955.49
	σ	0.0035	0.08	11.63	350.44	838.41	1.37	11.06	51.11	236.80	4155.74
Average		0.1540	-16.04	255.91	29.01	3835.24	33.43	77.92	-2.19	370.34	-5172.77
σ		0.0051	0.20	34.39	424.59	2401.14	2.64	30.84	142.71	298.54	4362.35

$$e_{IS}(\rho) = E_0 + \frac{K_0}{2} x(\rho)^2 + \frac{Q_0}{6} x(\rho)^3 + \dots,$$

$$e_{IV}(\rho) = E_{sym} + L_{sym} x(\rho) + \frac{K_{sym}}{2} x(\rho)^2 + \frac{Q_{sym}}{6} x(\rho)^3 + \dots,$$

$$\int_{0}^{\rho} \frac{\rho = \rho_n + \rho_p}{\delta = (\rho_n - \rho_p)/\rho}$$

ipnl

Empirical parameters from various effective approaches 10-20 % accuracy

								-			
Model		$ ho_0$	E_0	K_0	Q_0	Z_0	E_{sym}	L_{sym}	K_{sym}	Q_{sym}	Z_{sym}
	_	${\rm fm}^{-3}$	MeV	MeV	MeV	${\rm MeV}$	MeV	MeV	${\rm MeV}$	MeV	${ m MeV}$
Skyrme	Average	0.1586	-15.91	251.68	-300.20	1178.35	31.22	53.52	-130.15	316.68	-1890.99
	σ	0.0040	0.21	45.42	157.81	848.47	2.03	31.06	132.03	218.23	1191.23
RMF	Average	0.1494	-16.24	267.99	-1.94	5058.30	35.11	90.20	-4.58	271.07	-3671.83
	σ	0.0025	0.06	33.52	392.51	2294.07	2.63	29.56	87.66	357.13	1582.34
RHF	Average	0.1540	-15.97	248.06	389.17	5269.07	33.97	90.03	128.16	523.29	-9955.49
	σ	0.0035	0.08	11.63	350.44	838.41	1.37	11.06	51.11	236.80	4155.74
Average		0.1540	-16.04	255.91	29.01	3835.24	33.43	77.92	-2.19	370.34	-5172.77
σ		0.0051	0.20	34.39	424.59	2401.14	2.64	30.84	142.71	298.54	4362.35

$$e_{IS}(\rho) = E_0 + \frac{K_0}{2} x(\rho)^2 + \frac{Q_0}{6} x(\rho)^3 + \dots,$$

$$e_{IV}(\rho) = E_{sym} + L_{sym} x(\rho) + \frac{K_{sym}}{2} x(\rho)^2 + \frac{Q_{sym}}{6} x(\rho)^3 + \dots,$$

$$\int_{0}^{\rho} \frac{\rho = \rho_n + \rho_p}{\delta = (\rho_n - \rho_p)/\rho}$$

ipnl

50 % accuracy

Model		$ ho_0$	E_0	K_0	Q_0	Z_0	E_{sym}	L_{sym}	K_{sym}	Q_{sym}	Z_{sym}
		${\rm fm}^{-3}$	MeV	MeV	${\rm MeV}$	MeV	${\rm MeV}$	${\rm MeV}$	${ m MeV}$	MeV	${\rm MeV}$
Skyrme	Average	0.1586	-15.91	251.68	-300.20	1178.35	31.22	53.52	-130.15	316.68	-1890.99
	σ	0.0040	0.21	45.42	157.81	848.47	2.03	31.06	132.03	218.23	1191.23
RMF	Average	0.1494	-16.24	267.99	-1.94	5058.30	35.11	90.20	-4.58	271.07	-3671.83
	σ	0.0025	0.06	33.52	392.51	2294.07	2.63	29.56	87.66	357.13	1582.34
RHF	Average	0.1540	-15.97	248.06	389.17	5269.07	33.97	90.03	128.16	523.29	-9955.49
	σ	0.0035	0.08	11.63	350.44	838.41	1.37	11.06	51.11	236.80	4155.74
Average		0.1540	-16.04	255.91	29.01	3835.24	33.43	77.92	-2.19	370.34	-5172.77
σ		0.0051	0.20	34.39	424.59	2401.14	2.64	30.84	142.71	298.54	4362.35

$$e_{IS}(\rho) = E_0 + \frac{K_0}{2} x(\rho)^2 + \frac{Q_0}{6} x(\rho)^3 + \dots,$$

$$e_{IV}(\rho) = E_{sym} + L_{sym} x(\rho) + \frac{K_{sym}}{2} x(\rho)^2 + \frac{Q_{sym}}{6} x(\rho)^3 + \dots,$$

$$\int_{0}^{\rho} \frac{\rho = \rho_n + \rho_p}{\delta} \frac{\rho =$$

ipnl

Very large inaccuracy

Model		$ ho_0$	E_0	K_0	Q_0	Z_0	E_{sym}	L_{sym}	K_{sym}	Q_{sym}	Z_{sym}
	_	${\rm fm}^{-3}$	${\rm MeV}$	MeV	MeV	MeV	${\rm MeV}$	MeV	MeV	${\rm MeV}$	${ m MeV}$
Skyrme	Average	0.1586	-15.91	251.68	-300.20	1178.35	31.22	53.52	-130.15	316.68	-1890.99
	σ	0.0040	0.21	45.42	157.81	848.47	2.03	31.06	132.03	218.23	1191.23
RMF	Average	0.1494	-16.24	267.99	-1.94	5058.30	35.11	90.20	-4.58	271.07	-3671.83
	σ	0.0025	0.06	33.52	392.51	2294.07	2.63	29.56	87.66	357.13	1582.34
RHF	Average	0.1540	-15.97	248.06	389.17	5269.07	33.97	90.03	128.16	523.29	-9955.49
	σ	0.0035	0.08	11.63	350.44	838.41	1.37	11.06	51.11	236.80	4155.74
Average		0.1540	-16.04	255.91	29.01	3835.24	33.43	77.92	-2.19	370.34	-5172.77
σ		0.0051	0.20	34.39	424.59	2401.14	2.64	30.84	142.71	298.54	4362.35

$$e_{IS}(\rho) = E_0 + \frac{K_0}{2} x(\rho)^2 + \frac{Q_0}{6} x(\rho)^3 + \dots,$$

$$e_{IV}(\rho) = E_{sym} + L_{sym} x(\rho) + \frac{K_{sym}}{2} x(\rho)^2 + \frac{Q_{sym}}{6} x(\rho)^3 + \dots,$$

$$\rho = \rho_n + \rho_p$$

$$\delta = (\rho_n - \rho_p)/\rho$$

ipnl

		fixe	ed Ex	plore in	nside sn	nall inte	rval			Consid	Consider large interval K_{sym} Q_{sym} Z_{sym} MeVMeVMeV				
Model		$ ho_0$	E_0	K ₀	Q_0	Z_0	E_s	ym	L_{sym}	K _{sym}	Q_{sym}	Z_{sym}			
		${\rm fm}^{-3}$	MeV	MeV	MeV	${ m MeV}$	Me	eV	${\rm MeV}$	MeV	MeV	${ m MeV}$			
Skyrme	Averag	e 0.1586	-15.91	251.68	-300.20	1178.35	31.	22	53.52	-130.15	316.68	-1890.99			
	σ	0.0040	0.21	45.42	157.81	848.47	2.0	03	31.06	132.03	218.23	1191.23			
RMF	Averag	e 0.1494	-16.24	267.99	-1.94	5058.30	35.	11	90.20	-4.58	271.07	-3671.83			
	σ	0.0025	0.06	33.52	392.51	2294.07	2.0	63	29.56	87.66	357.13	1582.34			
RHF	Averag	e 0.1540	-15.97	248.06	389.17	5269.07	33.	.97	90.03	128.16	523.29	-9955.49			
	σ	0.0035	0.08	11.63	350.44	838.41	1.	37	11.06	51.11	236.80	4155.74			
Average		0.1540	-16.04	255.91	29.01	3835.24	33.	.43	77.92	-2.19	370.34	-5172.77			
σ		0.0051	0.20	34.39	424.59	2401.14	2.0	64	30.84	142.71	298.54	4362.35			

Another approach is possible: apply the eEOS directly in nuclei and fix the uncertainties directly from the experimental data (work in process).

Few remarks about correlations

There is a correlation between P_t and, at least, 2 parameters [Ducoin+ 2012] It is difficult to perform statistical analysis for more than 2 varibales (needs a lot of models) J. MARGUERON

Few remarks about correlations

The fractional power γ make this term contributing to all derivatives of the EoS.

The limited number of parameters of effective models is:

- An advantage a simplification,
- A limitation in their flexibility.

An empirical model for the nuclear EoS

- **Hypothesis:** 1) Matter is non-relativitic (\rightarrow E=T+V),
 - 2) Nuclear potential quadratic in δ ,
 - 3) The EoS is analytic in x (\rightarrow polynomial expansion possible),
 - 4) $\lim e(\rho, \delta) \rightarrow 0$ for $\rho \rightarrow 0$.

Kinetic energy:
$$t^{eff}(\rho, \delta) = \frac{1}{2} t_0^{FG} \left(\frac{\rho}{\rho_0}\right)^{2/3} \left[f^{FG}(\delta) + \frac{\rho}{\rho_0} f^{eff}(\delta)\right]$$

Binding energy:
$$e^{N}(\rho, \delta) = t^{eff}(\rho, \delta) + \sum_{\alpha \ge 0}^{N} \left[v_{\alpha}^{s,is} + v_{\alpha}^{s,iv} \delta^{2} \right] \frac{x^{\alpha}}{\alpha!} u_{\alpha}(\rho)$$

→ One-to-one correspondence between model parameters and empirical quantities:

→ Flexible model with no hidden correlations among parameters.

 $\begin{aligned} v_{\alpha=0}^{s,is} &= E_0 - t_0^{FG} (1 + \bar{M}) & \text{satisfy the} \\ v_{\alpha=1}^{s,is} &= -t_0^{FG} (2 + 5\bar{M}) & \text{limit } \rho \rightarrow 0 \\ v_{\alpha=2}^{s,is} &= K_0 - 2t_0^{FG} (-1 + 5\bar{M}) \\ v_{\alpha=3}^{s,is} &= Q_0 - 2t_0^{FG} (4 - 5\bar{M}) \\ v_{\alpha=4}^{s,is} &= Z_0 - 8t_0^{FG} (-7 + 5\bar{M}) \end{aligned}$

The EoS takes as inputs the empirical parameters of the considered model.

Consider additional constraints at $\rho=4\rho_0$ (e and p) for order 3 and 4.

 \rightarrow Needs of data beyond saturation density

ipnl

Consider additional constraints at $\rho=4\rho_0$ (e and p) for order 3 and 4.

ipnl

Consider additional constraints at $\rho=4\rho_0$ (e and p) for order 3 and 4.

 \rightarrow Needs of data beyond saturation density

ipnl

Reproduction of other EoS (Av18+UIX BHF)

ipnl

Reproduction of other EoS (Lattimer-Swesty LS220)

ipnl

*I***ARGUERON**

Our present knowledge on the empirical parameters

The set of "experimental" empirical quantities represents our knowledge and uncertainties on the properties of the EoS.

		fixe	d Ex	plore in	nside sn	nall inte	r	ValConsider large interval E_{sym} L_{sym} K_{sym} Q_{sym} Z_{sym} MeVMeVMeVMeVMeVMeV52.52120.15210.021200.02					
Model		$ ho_0$	E_0	K_0	Q_0	Z_0		E_{sym}	L_{sym}	K_{sym}	Q_{sym}	Z_{sym}	
	_	${\rm fm}^{-3}$	MeV	MeV	${\rm MeV}$	${\rm MeV}$		MeV	${\rm MeV}$	MeV	MeV	MeV	
Skyrme	Average	0.1586	-15.91	251.68	-300.20	1178.35		31.22	53.52	-130.15	316.68	-1890.99	
	σ	0.0040	0.21	45.42	157.81	848.47		2.03	31.06	132.03	218.23	1191.23	
RMF	Average	0.1494	-16.24	267.99	-1.94	5058.30		35.11	90.20	-4.58	271.07	-3671.83	
	σ	0.0025	0.06	33.52	392.51	2294.07	,	2.63	29.56	87.66	357.13	1582.34	
RHF	Average	0.1540	-15.97	248.06	389.17	5269.07	,	33.97	90.03	128.16	523.29	-9955.49	
	σ	0.0035	0.08	11.63	350.44	838.41		1.37	11.06	51.11	236.80	4155.74	
Average		0.1540	-16.04	255.91	29.01	3835.24	:	33.43	77.92	-2.19	370.34	-5172.77	
σ		0.0051	0.20	34.39	424.59	2401.14		2.64	30.84	142.71	298.54	4362.35	

Could these uncertainties be reduced by imposing some general constraints to the EOS?

Constraints on the nuclear properties in symmetric matter

Pressure deduced from analysis of the elliptic flow in Heavy Ion Collisions (HIC).

Additional constraints in asymmetric matter

For $\rho < 4\rho_0$ Symmetry energy: Density-dependence from IAS (below ρ_0)

ipnl

Constraints on the symmetry energy

IAS: Danielewicz & Lee 2014

Symmetry energy $E_{sym}(\rho) > 0$

ipnl

Additional constraints in neutron matter

Low density neutron matter: universal behaviour

Constraints on the nuclear properties in neutron matter

PNMLow: universal behaviour of low density neutron matter (a new analysis)

Constraints on the nuclear properties in NM

Sound velocity: $0 \le (c_s/c)^2 < 1$

PNMLow: universal behaviour of low density neutron matter

ipnl

Constraints on the nuclear properties in NM

Sound velocity: $0 \le (c_s/c)^2 < 1$

PNMLow: universal behaviour of low density neutron matter

Application to Neutron Stars

Impact of the "exp" unknown on the Mass/Radius relation

Impact of the isoscalar empirical parameters

ipnl

Impact of the isovector empirical parameters

Largest source of uncertainty: Lsym and Ksym

ipnl

Application to CC-SN

Can we better constrain the nuclear EOS with CC SN properties at bounce ?

Here, we probe only the dense and uniform matter EoS.

The low density properties (non-uniform matter) will be presented by D. Chatterjee

We start with LS-220 EOS, and modify the isoscalar (Ksat) and isovector (Esym) channels.

ipnl

We start with LS-220 EOS, and modify the isoscalar (Ksat) and isovector (Esym) channels.

ipnl

We start with LS-220 EOS, and modify the isoscalar (Ksat) and isovector (Esym) channels.

ipnl

Effect of K0

Effect of K0

ipnl

Effect of K0

(weak) Impact on $\boldsymbol{\rho}$ and T

Effect of Esym

Effect of Esym

ipnl

Effect of Esym

(weak) Impact on Ye, T and S

Conclusions

- We propose a flexible form of the EoS which can mimic most of existing nucleonic EoS.
- Information from nuclear physics can be easily encoded, but are not enough.
- There is a natural separation between the parameters related to nuclear experiments, and the ones which requires information from higher densities (HIC, NS).
- Most important parameters are L_{svm} and K_{svm}
- We can predict the boundaries in M/R of nucleonic EoS.
- Impact on CC-SN at bounce under study, but quite weak.

Outlooks

- Interplay with pairing at low density, explore various pairing modeling.
- Relativistic formulation (for high densities).
- Employing this model for structure of finite nuclei, HIC, NS and SN physics.
- For SN physics: Combining with statistical modelling based also on empirical parameters → unifying model for sub and supra-nuclear densities.

See talk of D. Chatterjee

Thank you for your attention !!