Gamma-ray emission from young stellar clusters

A.Marcowith (Laboratoire Univers et Particules de Montpellier) G.Maurin (LAPP), N.Komin (Wits), F.Krayzel (LAPP), G.Lamanna (LAPP)

based on G.Maurin et al A&A 2016 arXiV 1605.04202.

Outlines

Context: the origin of Cosmic Rays
The Stellar Wind OB stars model.
Stellar wind cluster catalogue selection.
Gamma-ray emissivity and perspectives for C.T.A.
Conclusions.

Origin of (galactic) cosmic rays

Origin of (galactic) cosmic rays

Origin of (galactic) cosmic rays

Stellar Wind OB model

- Convert a fraction of massive star wind power into energetic particles.
- Particle escape from the stellar cluster and interact with dense HII regions => gamma-rays.

Our purpose

Scientific case for CTA.

Revaluate the contribution to cosmic ray spectrum.

Main assumptions

Spherical geometry for the cluster and the HII region.
 Evolution model (Weaver+77 : R_b(t), Freyer+03 R_{HII}(t)).
 HII region is turbulent (δB, index=5/3, 3/2): diffusive transport of particles.

Model for particle acceleration

CR Important parameter ξ = fraction of the wind power imparted into energetic particles (electron/proton): $ξ_e = K_{ep} ξ_p$

$$\frac{\xi L_w}{V_b(t)} = \int_{E_{inj}}^{E_{max}} Q_0 \left(\frac{E}{E_{inj}}\right)^{-s} E \, \mathrm{d}E$$

collective shock acceleration model

- E_{max} , s based on Klepach+00: $E_{max,p}$ = 1-10 PeV, $E_{max,e}$ =10-100 TeV, s=2.
- $E_{inj} = 1 \text{ GeV}$ => $Q_0(t,s, E_{max'}, \xi) = t^{-6/5}$ (Weaver+77)

Solution in the HII region

$$N(E,t) = \frac{1}{P(E)} \int_0^t P(E_t) Q(E_t,t') \exp\left(-\int_{t'}^t \frac{\mathrm{d}x}{\tau_{esc}(E_x)}\right) \mathrm{d}t'$$

P(E) = energy loss rate dE/dt : synchrotron/Inverse Compton,Bremsstrahlung for electrons, pp interaction for protons.

 τ_{esc} = escape time from HII region due to diffusive isotropic transport

$$\tau_{esc}(E,t) = \frac{R_{HII}(t)^2}{6 D(E)}$$

D=diffusion coefficient controlled by turbulence parameters: 1) Amplitude δB 2) index v 3) coherence length l_c SNR-PWN MODE Meudon 2016

Cluster selection

From Galactic O-star catalog (Apellaini'11)
Young enough age < 10 Myrs
No evolved star in the cluster
No supernova explosion yet
HII shape almost spherical
Known astrophysical properties: population of O-type stars, radius and density of the HII region, cluster distance.

Cluster selection

Cluster	O stars	Luminosity	R _{HII}	R _b	n _{HII}	Log(Age)	D
name	(most massive)	$(erg s^{-1})$	(pc)	(pc)	(cm^{-3})	Log(years)	(kpc)
NGC 2244	4 (O4)	1.0×10^{37}	16.9	6.2	15	6.28	1.55
NGC 1976	4 (07)	1.5×10^{36}	3.7	2	8900	6.4	0.4
NGC 2175	1 (06.5)	1.3×10^{36}	12	2.56*	13	6.3	2.2
NGC 3324	2 (06.5)	1.6×10^{36}	6.5	2.32*	33	6.4	3
RCW 8	2 (08.5)	4.8×10^{35}	2.2	1.86*	91	6.78	4.2
RCW 62	10 (O6)	9.2×10^{36}	25.6	2.59*	430	6.8	2.2
NGC 6618	17 (O4)	3.3×10^{37}	4	1.69*	470	6	1.6
NGC 2467	3 (O3)	1.4×10^{37}	4	1.51*	550	6.3	4.1

NGC 2244=Rosette nebula, NGC 1976=Orion nebula = sample the gas density. R_b with a star have calculated from Weaver+77 (so are not deduced from observations.

=> Fermi analysis with Pass8.

Fermi TS map

red circle =region used in the analysis contours=HII regions stars=sources from the 3FGL catalogue

Rosette Nebula

Rosette nebula

Orion nebula

SNR-PWN MODE Meudon 2016

Limits for ξ

Cluster	Fern	$\xi_{\rm max}$	
name	TS	$\Phi_{UL}^{95\%}$ (cm ⁻² s ⁻¹)	(%)
NGC 2244	22.1	4.61×10^{-10}	5.80
NGC 1976	5.6	3.50×10^{-10}	6.69
NGC 2175	7.1	2.14×10^{-10}	9.81
NGC 3324	2.7	5.54×10^{-10}	100
RCW 8	11.2	1.75×10^{-10}	100
RCW 62	0.1	3.54×10^{-10}	0.13
NGC 6618	1.4	4.20×10^{-11}	0.27
NGC 2467	3.2	9.57×10^{-11}	7.06

(except to 2 objects) Maximum fraction \mathcal{E} (protons) between 0.1-10% but not more.

CTA detection

Cluster ξ_{CTA} (%)		Cluster	ξ _{CTA} (%)	
NGC 2244	0.72	NGC 1976	1.13	
NGC 2467	4.21	NGC 2175	2.21	
NGC 6618	0.37	RCW 62	0.03	
RCW 8	N.D.	NGC 3324	16.1	

Values for ξ for a detection at 5 σ in 50h with CTA (sensitivity curves from Becherini+12)

Sensitivity to parameters

	$\xi_{\max}(\%)$					
	$\delta B/B$		l_c		5	
Cluster	10 ⁻²	10 ²	0.5 pc	2.0 pc	1.5	2.5
NGC 2244	5.95	5.10	5.88	5.88	16.06	0.85
NGC 1976	7.53	1.28	6.29	7.34	23.12	0.90

Table 2. Influence of the main parameters (magnetic turbulence level $\delta B/B$, coherence length l_c , index of injection *s* with $E_{\text{max}} = 10 \text{ PeV}$) on the upper limit of the fraction of mechanical energy converted into accelerated particles ξ_{max} for NGC 2244 (Rosette Nebula) and NGC 1976 (Orion Nebula).

Conclusions

A conservative selection of 8 young star clusters based on the completeness of their properties.

Real Pion decay dominate the gamma-ray emission.

- CR Upper limit on ξ only: maximum 10% of the total wind power.
- CR Selected clusters could be detected by CTA with ξ close to 0.01.
- A Young stellar wind cluster are not (likely) strongly contributing to the CR background spectrum.