# HIGH-ENERGY PARTICLE ACCELERATION AT ASTROPHYSICAL SHOCKS: RECENT PROGRESSES

A.Marcowith (Laboratoire Univers et Particules de Montpellier)

based on Marcowith A et al Reports on Progress in Physics, 2016, 79, 6901

# OUTLINES

- Astrophysical contexts
- Particle acceleration at <u>non-relativistic</u> shocks: Case of supernova remnants
  - Diffusive shock acceleration
- Particle acceleration at <u>relativistic</u> shocks

Fermi acceleration at last ?

• Conclusions

# ASTROPHYSICAL CONTEXT.

• Shocks are ubiquitous + energetic particles (GeV-TeV) and non-thermal radiation (radio-gamma-rays) are found in many astrophysical objects.

#### RELATIVISTIC SHOCKS

Crab nebula SED

Abdo+09



#### NON-RELATIVISTIC SHOCKS



SNR-PWN-MODE MEUDON 2016 SNR & GRB are candidate sources for cosmic ray production

# PARTICLE ACCELERATION AT SHOCKS: ASTROPHYSICAL INTERESTS

- 1. <u>Explain the observations</u>:
  - SED: particle content, energetics
  - Variability: acceleration mechanism
- 2. <u>The highest energies</u>:
  - Link with the origin of cosmic rays: where are the sources ?
- 3. <u>Shocks are parts of complex systems</u>:
  - What back-reaction over shock, jet, accretion ... dynamics ?
- 4. Injection of non-thermal component in inter-stellar/galactic media:
  - Contribution to diffuse background emissions
  - Non-linear effects over structure dynamics

# SUPERNOVA REMNANTS (SNR)

- Known as non-thermal sources since late 40's (Ryle & Smith 1948).
- 12 SNR identified by Fermi (third Fermi catalogue: Acero+15), 11 SNR identified by Cerenkov instruments (http://tevcat.uchicago.edu/)
- Potential sources of galactic cosmic rays (GCR): MeV-PeV (EeV ?). Not the only one although (see eg this afternoon).
- X-ray observations (especially high-resolution by Chandra): particle acceleration at work ⇔ magnetic amplification ⇔ plasma microphysics.
- <u>Favorite acceleration process</u>: diffusive shock acceleration (Krymsky'77, Bell'78, Drury'83).

# DIFFUSIVE SHOCK ACCELERATION

• Particles can reach high energies with repeated high number shock crossings.



crossing from upstream: first interaction is head-on => energy kick  $\sim (U_{sh}-U_d)/U_{sh}$ 

crossing from downstream: first interaction is head-on => energy kick  $\sim (U_{sh}-U_d)/U_{sh}$ 

#### MAIN RESULTS ... BUT MODIFIED BY NON-LINEAR EFFECTS

- 1. The relative energy gain  $\Delta E/E \sim (1-r)$ ,  $r = \rho_d/\rho_u = 4$  (strong supersonic adiabatic shocks)
- 2. At each cycle particles have a finite probability to escape downstream

Points 1 and 2 => particle distribution at the shock front only dependent on r:

Index  $s_E = -dlog(N)/dlog(E) = (r+2)/(r-1)=2$  for r=4 (or  $s_p = -dlog(N)/dlog(p)=4$ ).

It soon appeared (Drury & Voelk'81) that this solution produced too efficient particle acceleration.



Non-linear solution (Blasi'02)

- CR escaping upstream => escaping flux => increase compression (and r)
- CR overpressure => increase compression.
- Conservation laws => subshock compression < 4 => softer low energy CR spectrum

=> Concave shape in p<sup>4</sup>f(p)

## SUB-STRUCTURES IN X-RAYS

Tycho SNR by Chandra in 4-6 keV band



Filaments (Hwang+02) and stripes (Eriksen+11)

Filament size  $\sim 0.01$  pc (% shock radius)  $\sim$  distance between 2 stripes

# MAGNETIC FIELD AMPLIFICIATION

#### $L_X$ =deprojected filament size

| _                                                 |                       | Name            | Distance               | Shock spec              | ed Proj                                | ected width              | Age                    | Cut-off er                                             | nergy   |
|---------------------------------------------------|-----------------------|-----------------|------------------------|-------------------------|----------------------------------------|--------------------------|------------------------|--------------------------------------------------------|---------|
| <                                                 | $\longrightarrow$     | Cas A           | 3.4 kpc (1)            | 5200 km s <sup>-1</sup> | <sup>1 (2)</sup> 0.0                   | 5 pc (3") <sup>(3)</sup> | 320 yr ? <sup>(4</sup> | $1200 \text{ eV}^{(3)}$ (where $1200 \text{ eV}^{(3)}$ | hole SN |
|                                                   |                       | Kepler          | 4.8 kpc (5)            | 5400 km s <sup>-1</sup> | <sup>1</sup> (6) 0.0                   | 7 pc (3") <sup>(7)</sup> | 400 yr                 | 900 eV                                                 | (8)     |
|                                                   |                       | Tycho           | 2.3 kpc <sup>(9)</sup> | 4600 km s <sup>-1</sup> | 0.0                                    | 5 pc (4") <sup>(7)</sup> | 430 yr                 | 290 eV                                                 | (11)    |
|                                                   |                       | SN 1006         | 2.2 kpc (12)           | 2900 km s <sup>-1</sup> | (13) 0.2                               | pc (20") <sup>(14)</sup> | 1000 yr                | 3000 eV                                                | (15)    |
|                                                   | <u> </u>              | G347.3-0.5      | 1.3 kpc (16)           | 4000 km s <sup>-1</sup> | ? (17) 0.25                            | pc (40") (18)            | 1620 yr ? (            | <sup>(9)</sup> 2600 eV                                 | (18)    |
| $L_{\rm X} = {\rm MIN}(L_{\rm adv}, L_{\rm dif})$ | )                     |                 |                        |                         |                                        |                          |                        |                                                        |         |
| TTT                                               |                       |                 |                        |                         |                                        |                          |                        |                                                        |         |
| $L_{adv} - U_d l_{syn}$                           |                       |                 |                        |                         | Par                                    | izot+0                   | 6                      |                                                        |         |
|                                                   |                       | V <sub>sh</sub> |                        |                         |                                        |                          |                        |                                                        |         |
| $\mathbf{I} = (\mathbf{D} + \mathbf{v})^{1/2}$    |                       | 011             |                        |                         |                                        |                          |                        |                                                        |         |
| $L_{dif} - (D_d \iota_{syn})^{n}$                 |                       |                 |                        | $\longrightarrow$       |                                        |                          |                        |                                                        |         |
|                                                   |                       |                 |                        |                         |                                        |                          |                        |                                                        |         |
| 1.00                                              |                       |                 | -                      |                         |                                        |                          |                        |                                                        |         |
| $=> B_1$                                          | and the second second |                 | S                      | NR                      | $\tau_{\rm syn}^{\rm max}/t_{\rm SNI}$ | $B_{adv}$                | Bdiff                  | $\Delta R^{(B)}$                                       |         |
| d d                                               |                       |                 | na                     | ame                     | $(\times 4\bar{P}/r)$                  | (μG)                     | (μG)                   | $\rho_{\rm B} = \frac{\rm diff}{\Delta R_{\rm adv}}$   |         |
|                                                   |                       |                 | Ca                     | as A                    | <2.6%                                  | 210                      | 230                    | 1.1                                                    |         |
|                                                   |                       |                 | Ke                     | pler                    | <2.8%                                  | 170                      | 180                    | 1.1                                                    |         |
|                                                   |                       |                 | Ту                     | cho                     | <2.1%                                  | 200                      | 230                    | 1.2                                                    |         |
|                                                   |                       |                 | SN                     | 1006                    | <5.9%                                  | 57                       | 90                     | 2.0                                                    |         |
|                                                   |                       |                 | G347                   | .3-0.5                  | <3.3%                                  | 61                       | 77                     | 1.4                                                    |         |
|                                                   |                       |                 |                        |                         |                                        |                          |                        |                                                        |         |

We must find a way to amplify the ISM magnetic field by more than one order of magnitude ...

Magnetic field amplification produces softer spectra: s > 2

# MAGNETIC FIELD AMPLIFICATION PROCESS



<u>High energy particles</u>: free streaming ahead the shock front => CR current => return current => magnetic field amplification: Non-resonant streaming instability (Bell'04).

- Modes generated at scales  $l << r_L$ with a fast growth rate  $G \sim 100 \text{ yr } E_{PeV} n_{cc}^{-1/2} V_{sh,3}^{-3}$ 
  - Very fast growth in fast shocks moving in dense media.

# NUMERICAL SIMULATIONS

#### Particle-in-cell/Magneto-hydrodynamics (Bai+15)



filamentary structures <del>(non</del>-linear stage of the streaming instability

# magnetic field amplification



a transition towards diffusive shock acceleration ?



SNR-PWN-MODE MEUDON 2016

# NON-RELATIVISTIC SHOCKS: ORIGIN OF (GALACTIC) COSMIC RAYS

- <u>Several hot topics</u>:
- 1. Injection and acceleration efficiency: effect of magnetization  $M_a$ ), magnetic field obliquity (Riquelme & Spitkovsky'11, Caprioli+14)
- <u>Maximum energies</u>: If the non-resonant streaming instability dominates: reach at early times (Bell+13, AM+14) => PeV could be reached.
- 3. <u>Escape process</u>: Strongly dependent on the ambient medium, possibility to have CR halos for timescales a few10 000 years (Nava+15)

# RELATIVISTIC SHOCK ACCELERATION: FERMI ACCELERATION AT LAST ?

• Relativistic shocks are intrinsically different because  $V_{sh} \sim c = particle$ velocity => different kinematics.



## FERMI CYCLES IN RELATIVISTIC SHOCKS

• No need for many crossings to gain much energy ... in one cycle a particle can gain  $\Gamma^2$ , but hence due to anisotropy=> gain factor 2.



Lemoine & Pelletier'03

solution obtained with pure(no mean magnetic field) Kolmogorov type turbulence

Consistent with particle distribution => X- & gamma-ray spectrum from Crab nebula

# FERMI CYCLES IN RELATIVISTIC SHOCKS

But the magnetic field in the shock rest-frame is quasi-perpendicular and likely superluminal => escape downstream 3/2 cycle at max. Begelman & Kirk'90



To unlock the effect of guiding large scale field the turbulence has to be generated at small scales (Pelletier, Lemoine, AM'09)

- Turbulence amplitude  $\delta B/B >> 1$
- Turbulent wavelengths <<  $\rm r_L$

Challenging but possible ...

### NUMERICAL SIMULATIONS

Particle-in-cell simulations

Strong effect of background plasma magnetization (magnetic energy density/rest mass energy) (Sironi & Spitkovsky'11)



SNR-PWN-MODE MEUDON 2016

# ASTROPHYSICAL IMPLICATIONS: UHE-CRS

- Relativistic shock acceleration performances:
  - Massive star wind magnetization is very low (GRB afterglow)

$$\sigma = \frac{B_{\rm W}^2}{4\pi n m_i c^2} \simeq 1.7 \times 10^{-8} B_{\rm W,-5}^2 n_{-0.5}^{-1} \qquad \begin{array}{l} {\rm Sironi+13} \\ {\rm Plotnikov+1} \end{array}$$

• Typical maximum energy for protons

$$\gamma_{\mathrm{sat},i}^{\mathrm{up}} \simeq 1.3 \times 10^7 \, E_{0,54} \, A_{11.5}^{-1} \, \sigma_{-8}^{-1/4} R_{16}^{-1}$$
 (= 13 PeV)

and  $g_e \sim 10^8 (50 \text{ TeV})$  for electrons => 30 GeV photons.

- How to accelerate EeV-ZeV CRs ?
  - Mildly relativistic shocks (larger precursors, obliquity is less a problem, MHD instabilities could arise (Pelletier+09, Casse+13).
  - Ion acceleration in young millisecond pulsar winds ? Lemoine+15

# CONCLUSIONS

• Linear theories of HE CR acceleration predict power-law solutions

 $\rm s_E=(r+2)/(r-1)$  (non-relativistic shocks),  $\rm s_E=2.2$  (relativistic shocks with isotropic turbulence).

- NB: These solutions are valid in the test-particle limit, in case the turbulence is isotropic: none of these are realistic in the nature ...
- <u>Non-relativistic shocks</u>:
  - fast (but still NR) are sites of magnetic field amplification possibly explained by the streaming effect of the highest energies, final source spectra should give s>2.
  - PeVatrons are more likely to be found at early stages of SNR evolution.
- <u>Relativistic shocks</u>:
  - Fermi acceleration only possible with micro-turbulence requires weak magnetization to proceed.
  - Maximum energies however are limited because of weak diffusion. Solutions to reach EeV or more: mildly relativistic shocks or contribution from young millisecond pulsars.