EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY

Jouvin L., Lemière A. and Terrier R.

Excess of VHE cosmic rays (CRs)

γ-ray count map

After subtracting the brightest TeV sources:

-> diffuse hadronic emission

Credits: H.E.S.S. collaboration Aharonian et al., 2006

-> CRs energy density: 3-9 times higher than the local one and harder spectrum (Γ =2.3)

Credits: F. Yusef-Zadeh

SgrA East :

- Supernovae remnant
- situated at ~ 2 pc from SgrA*
- explosion ~ 10 000 years
- →Impulsive injection

Flat CR profile → now excluded

Abramowski et al., 2006

Credits: F. Yusef-Zadeh

SgrA*:

Super Massive black hole

M : 4*10⁶ M_{sun}

(Ghez et al. (2000) and Gillesen et al. (2009))

Extremely faint nowadays

- L_{Eddigton}: 10⁴⁴ erg
- L_{bolometrige}: 10³⁶ erg

Radiatively inneficient accretion flow -> powerful outflow evacuating the matter where CR acceleration is possible

 Dissipated power: 10³⁹ ergs⁻¹ (Wang et al , 2013)

H.E.S.S: total CRs rays flux ≈ 10⁵⁰ erg
BH: 10% of the accretion power to CR acceleration
→ Stationary injection

Credits: F. Yusef-Zadeh

SgrA*:

Super Massive black hole

• M:4*10⁶ M_{sun}

(Ghez et al. (2000) and Gillesen et al. (2009))

Extremely faint nowadays

- L_{Eddigton}: 10⁴⁴ erg
- L_{bolometrige}: 10³⁶ erg

Radiatively inneficient accretion flow -> powerful outflow evacuating the matter where CR acceleration is possible

 Dissipated power: 10³⁹ ergs⁻¹ (Wang et al , 2013)

H.E.S.S: total CRs rays flux ≈ 10⁵⁰ erg
BH: 10% of the accretion power to CR acceleration
→ Stationary injection

Credits: F. Yusef-Zadeh

SgrA*:

Super Massive black hole

• **M**: 4*10⁶ M_{sun}

(Ghez et al. (2000) and Gillesen et al. (2009))

Extremely faint nowadays

L_{Eddigton}: 10⁴⁴ erg s⁻¹

Loolometriqe 10³⁶ erg s⁻¹

Radiatively inneficient accretion flow -> powerful outflow evacuating the matter where CR acceleration is possible

 Dissipated power 10³⁹ erg s⁻¹ Wang et al , 2013)

H.E.S.S: total CRs rays flux ≈ 10⁵⁰ erg
BH: 10% of the accretion power to CR acceleration
→ Stationary injection

Multiple CR impulsive injections

Galactic Center: 2% of the Galaxy's massive star formation

- ➔ high massive star formation
- → high SN rate: 10^{-3} - 10^{-4} yrs⁻¹ (Crocker et al (2011), Ponti et
- al (2015)) but large uncertainties
- → central value of Crocker et al (2011): 1 SN per 2500 years

What is the impact of this SN on the VHE emission in the GC?

Spatial distribution of the SN in the GC

Credits: M. Muno

- Thermal emission concentrated in the central part of the GC
- Three compact and massive cluster in the GC: the Quintuplet (3-5 <u>Myrs</u>), the Arches (2-3 <u>Myrs)</u> and the Central Cluster (4-6 <u>Myrs</u>)
- Several independant observations shown the presence of a high number of isolated stars (Mauerhan, 2010)

SNe modelisation: One zone steady state model

Advection vs diffusion

Advection:

- perpendicular wind of speed v (yoast-hull (2014), Crocker et al (2011))
- v=1000 km/s
- T_{adv} = H/v → T_{adv} = 30 000 yrs

Diffusion:

- along the magnetic field lines
- D=D_{10TeV} (E/10 TeV)^{0.3}
- D_{10TeV}=2×10²⁹ m²s⁻¹
- T_{diff} = H²/D → At 1 Tev, T_{diff} =600 yrs

Diffusion more competitive than advection

Spectral energy distribution

GAMERA (Hahn, 2015) solves the following kinetic equation: $\frac{\delta N}{\delta t} = \frac{\delta}{\delta \gamma}(PN) - \frac{N}{\tau} + Q$

SED 10-7 advection 10⁻⁸ pion-decay 10⁻⁹ Synch Brems TeV data, Aharonian et al (2006) GeV data, Macias et al (2014) 10-10 10¹⁰ 1012 1013 1014 1011 10⁸ 10⁹ 10^{6} 10^{7} 10^{3} 10^{5} E(eV)

 $u F_{
u}({
m GeV} \cdot {
m cm}^{-2} \cdot {
m s}^{-1})$

power-law injection: Q=Q₀E^{-p}

 $\tau_{diff} < t_{SN}$: stationary state assumption incorrect

A simple time dependent <u>3D</u> model of <u>CR</u> injection and gamma-ray production

3D matter distribution

Sawada et al (2004)

- No kinematical model
- OH/CO ratio carries information on the position of the gas along the line of sight relative to the continuum source
- $> M_{tot} = 40 \times 10^6 M_{sun}$, (1.2-6.4 10⁷ M_{sun})
- > Exponential decay along the lattitude (Ferriere K et al. 2007)

CR diffusion ≻Injection: Power law Q= N₀E⁻²

Propagation: Transport equation

 $D=D_{10TeV}$ (E/10 TeV)^{0.3}, $D_{10TeV}=2\times10^{29}$ m²s⁻¹ (interstellar medium value):

High diffusion coefficient \rightarrow Neglecting the convection \rightarrow diffusion equation

$$\frac{\partial f}{\partial t} + (\vec{u} \cdot \vec{\nabla})f + \vec{\nabla}\vec{J} = Q \qquad \qquad \vec{J} = -D\vec{\nabla}f$$

Two solutions: impulsive (SNRs) and stationary (SgrA*)

Profile of the 3D emission and comparaison with H.E.S.S. data

Gamma ray profile for the SNRs filling the GC

- Recurrence time: 2500 years,
- Sources spatial distribution:
- 1)homogeneous cylinder

2)homogeneous cylinder + concentration of the SNs in the two clusters: Quintuplet and Central

100 temporal and spatial distributions Solid line: median of the y ray profiles + spread around this median

Gamma ray profile for the SNRs filling the GC

- Recurrence time: 2500 years,
- Sources spatial distribution:

1)homogeneous cylinder

2)homogeneous cylinder + concentration of the SNs in the two clusters: Quintuplet and Central

100 temporal and spatial distributions Solid line: median of the y ray profiles + spread around this median

γ-rays: spatial distribution

SNs:100 temporal and spatial distributions Solid line: median of the γ ray profiles + spread around this median

γ-rays: spectral distribution

Spectrum of the region: 0.8°< I < 0.8° and 0.3°< b < 0.3°
 Both models, stationary source at the center or SNRs, can reproduce the H.E.S.S. total flux

Model Parameters	Values
Spectral index of the proton	2
spectrum	
Emin for the injected proton	1 TeV
Emax for the injected proton	1 PeV
Box size	$500 \mathrm{p}c \times 500 \mathrm{p}c \times 50 \mathrm{p}c$
Total mass	$4 \times 10^7 M_{\odot}$
Do (10 TeV)	$2 \times 10^{29} \text{ cm}^2 \text{s}^{-1}$
Spectral index of the diffusion $coefficient(d)$	0.3
Power for CR acceleration	$1.5 \times 10^{38} \text{ erg s}^{-1}$ (Stationary source)
E_{SN}	10 ⁵¹ erg (Impulsive source)
Efficiency for CR acceleration	2% Impulsive source)
SN recurrence time	2500 yrs (Impulsive source)

SNs:100 temporal and spatial distributions Solid line: median of the γ ray profiles + spread around this median

CR density profile

SNs:100 temporal and spatial distributions Solid line: median of the γ ray profiles + spread around this median

Conclusion

 \succ CR and γ -rays profile: peak toward the GC

SNRs contribution can not be neglected:

- High SN rate
- Already re(over)produce the total flux
 -> SNR efficiency?
- With a realistic spatial distribution -> gradient of CR density toward the center but seems difficult for the SNs to reproduce all the VHE emission at the center
- Single stationary accelerator at the center as proposed by Abramowski et al., 2016:
 - fit very well the H.E.S.S. data point (spectral and spatial distribution)
- Not possible to conclude that <u>SgrA</u>* is the only source responsible for all the VHE emission observed with H.E.S.S. in the GC knowing the significant contribution of the SNe

Backup slides

Advection

$$L_{\gamma} = 3.4 \times 10^{35} \operatorname{erg s}^{-1} \left(\frac{\eta}{10\%}\right) \left(\frac{E_k}{10^{51} \operatorname{erg}}\right) \left(\frac{\tau_{SN}}{10^4 \operatorname{yrs}}\right)^{-1} \left(\frac{H}{30 \operatorname{pc}}\right) \qquad L_{\gamma}(10 \operatorname{TeV}) = 3.2 \times 10^{35} \operatorname{erg s}^{-1} \left(\frac{\eta}{10\%}\right) \left(\frac{E_k}{10^{51} \operatorname{erg}}\right) \left(\frac{\tau_{SN}}{2 \times 10^3 \operatorname{yrs}}\right)^{-1} \times \left(\frac{V}{10^3 \operatorname{km/s}}\right)^{-1} \left(\frac{n}{100 \operatorname{cm}^{-3}}\right) \qquad \times \left(\frac{H}{30 \operatorname{pc}}\right)^2 \left(\frac{D_o}{2 \times 10^{29} \operatorname{cm}^2 \operatorname{s}^{-1}}\right)^{-1} \left(\frac{n}{100 \operatorname{cm}^{-3}}\right)$$

Aharonian et al (2006): Lγ=3.5e35 erg s⁻¹

