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Introduction and motivation

Neutron stars



Introduction and motivation

The inner structure of a neutron star

Neutron stars (NS) are compact stellar objects with masses M ∼ M�,
radii R ∼ 10 km and magnetic fields B ∼ 1010 − 1014 G.

The inner structure of a NS
The composition of the
outer crust

The outer crust of the star consists of nuclei and conducting Fermi gas
of relativistic electrons.



Introduction and motivation

Transport coefficients

Transport coefficients play important role in several astrophysical problems:

Cooling of a NS

Magnetic field evolution

Electromagnetic radiation from the surface of a NS

Radial oscillations of NS surface

Propagation of magneto-hydrodynamic (MHD) waves in NS crust

Transport properties of NS crust are well studied at low temperatures (T <1 MeV). More

recently, resistive MHD simulations of relativistic stellar systems, in particular of binary

magnetized NS mergers and the hypermassive NS has brought into focus the treatment of warm

(heated) crustal matter. Such matter is also expected in proto-neutron stars newly formed in the

aftermath of supernova explosion and in accreting neutron stars. The aim of this work is the

calculation of the electrical conductivity of warm outer crust of a NS. We calculate the electrical

conductivity for densities 106 < ρ < 1011 g cm−3, temperatures 0.1 < T < 10 MeV and

non-quantizing magnetic fields 1010 < B < 1014 G. The density-temperature range discussed

here covers the degenerate regime as well as the non-degenerate regime for electrons.



Kinetic theory

The Boltzmann equation

The kinetics of electrons is described by the Boltzmann equation for the distribution function

∂f
∂t

+ v
∂f
∂r
− e(E + [v× H])

∂f
∂p

= I[f ].

The collision integral for electron-ion scattering has the form

I = −(2π)4
∑
234

|M12→34|2δ(4)(p1 + p2 − p3 − p4)[f1(1− f3)g2 − f3(1− f1)g4].

For small perturbations the solution of the Boltzmann equation can be searched in the form

f = f0 + δf , f0 =
1

eβ(ε−µ) + 1
, g = ni(2πβ/M)3/2e−βε.

In the relaxation time approximation the solution has the form

δf =
eτ

1 + (ωcτ)2

∂f0
∂ε

vi
[
δij − ωcτεijkhk + (ωcτ)2hihj

]
Ej, hi = Hi/H.

The relaxation time is given by the formula

τ−1 = (2π)−5
∫

dωdqdp2
q · p
p2
|M12→34|2δ(ε1 − ε3 − ω)δ(ε2 − ε4 + ω)g2(1− f 0

3 )(1− f 0
1 )−1.



Kinetic theory

The electrical conductivity tensor

The electrical conductivity tensor is defined as the coefficient of proportionality between the
electrical current and electrical field

ji = −
∫

2dp
(2π)3

eviδf = σijEj.

If magnetic field is directed along z axis σij tensor has the form

σ̂ =

σ0 −σ1 0
σ1 σ0 0
0 0 σ

 .

Longitudinal conductivity does not depend on magnetic field (isotropic conduction)

σ = −
e2

3π2

∫ ∞
0

dpp2v2τ
∂f0
∂ε
.

Transversal (σ0) and Hall (σ1) conductivities are magnetic field dependent

σ0 = −
e2

3π2

∫ ∞
0

dpp2v2 τ

1 + (ωcτ)2

∂f0
∂ε
, σ1 = −

e2

3π2

∫ ∞
0

dpp2v2 ωcτ 2

1 + (ωcτ)2

∂f0
∂ε
.

The two components σ0 and σ1 depend on magnetic field via the dimensionless product
ωcτ , where ωc = eB/ε is the cyclotron frequency of electrons.



Kinetic theory

Recovering limiting cases

For two limiting cases of strongly degenerate and non-degenerate electrons the following
analytical formulae can be obtained:

At low temperature limit T � TF doing the substitution ∂f 0/∂ε→ −δ(ε− εF) one
comes to the famous Drude formulae

σ =
nee2τF

εF
, σ0 =

σ

1 + (ωcFτF)2
, σ1 =

ωcFτF

1 + (ωcFτF)2
σ.

At high temperature limit T � TF Drude-type formulae work with 20% precision
(ε̄ ' 3T is the average energy of ultrarelativistic electrons in the non-degenerate regime)

σ '
nee2τ̄

ε̄
, σ0 '

σ

1 + (ω̄cτ̄)2
, σ1 '

ω̄cτ̄

1 + (ω̄cτ̄)2
σ.

The anisotropy of the conductivity tensor depends on the value of the parameter ωcτ :

If ωcτ � 1 (weak magnetic fields), σ0 ' σ, σ1 ' ωcτσ � σ and the conduction is
isotropic

σkj ' δkjσ.

If ωcτ � 1 (strong magnetic fields), σ0 ' σ(ωcτ)−2 � σ, σ1 ' σ(ωcτ)−1 � σ and
the conductivities transversal to magnetic field are strongly suppressed.



Relaxation time

The electron scattering mechanism

The electron scattering mechanism depends on the state of nuclei. The latter is controlled by the
value of the plasma parameter Γ.

If Γ < 1 - Boltzmann gas, the scattering is on individual, uncorrelated nuclei
If 1 < Γ < Γm ' 160 - liquid state, the scattering is on correlated nuclei
If Γ > Γm - crystal state, the scattering is on phonons and impurities

Γ =
Z2e2

aiT
, ai =

(
3

4πni

)1/3

TC =
Z2e2

ai
, Tm =

Z2e2

aiΓm

Tp =

(
4πZ2e2ni

M

)1/2
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In the case of liquid plasma the conductivity is dominated by the electron scattering off

correlated nuclei. The correlation is taken into account via 2-point structure factor for nuclei.



Relaxation time

The ion-ion correlation function and nuclear formfactor

The ion-ion interaction is taken into account via 2-point structure function S(q), which depends
on the value of the parameter Γ. We assume that only one sort of ions exists at a given density,
so that the structure functions of one-component plasma (OCP) can be used. We adopt the
Monte-Carlo results of Galam and Hansen (Γ ≥ 2) and the analytical (leading order)
expressions derived by Tamashiro et al. (Γ ≤ 2).

0 5 10 15
a
i
q

0

0,5

1

1,5

2

S
(q
)

Γ = 0.1

Γ = 1

Γ = 10

Γ = 40

Γ = 100

F(q) = −3
qrc cos(qrc)− sin(qrc)

(qrc)3

rc = 1.15 A1/3fm

0 5 10 15
qr

c

0

0.2

0.4

0.6

0.8

1

F
(q
)

The ion structure factor suppresses the scattering with small q. In aiq� 1 limit S(q)→ 1.



Relaxation time

The scattering probability

The electron-ion scattering matrix element can be calculated according to the Feynman rules

Jµ, J′µ are electronic and ionic 4-currents respectively

Jµ = −e∗ūs3 (p3)γµus1 (p1), J′µ = Ze∗vµ2 .

The relaxation time in the case of inelastic electron-ion scattering is given by the formula

τ−1(ε) =
πZ2e4ni

εp3

∫ ε−m

−∞
dωe−ω/2T f 0(ε− ω)

f 0(ε)

∫ q+

q−
dq(q2 − ω2 + 2εω)S(q)F2(q)×

×
1
√

2πθ
e−ω

2/2q2θ2
e−q2/8MT

{
(2ε− ω)2 − q2

|q2 + Πl|2
+ θ2 (q2 − ω2)[(2ε− ω)2 + q2]− 4m2q2

q2|q2 − ω2 + Πt|2

}

e∗ =
√

4πe, θ =
√

T/M, q± =
∣∣±√ε2 − m2 +

√
(ε− ω)2 − m2

∣∣



Relaxation time

Limit of elastic scattering

0
ω

0

q

ω
 =

 ε
 -

 m

-ω
0

ω
0

q = 2p

q = p

q
- (ε,ω) q -

(ε,ω
)

q
+ (ε,ω)

ω = θ q

θθ

ω = − θ q

Due to the suppression factor θ the scat-
tering is more effective via exchange of
virtual photons with energies and mo-
menta lying inside the triangle ω/q < θ
on the plane (ω, q) (slightly inelastic
scattering). In the limit of infinite mas-
sive ions (θ → 0) the electron-ion inter-
action is pure electrostatic, therefore the
scattering becomes elastic

1

θ
√

2π
e−x2/2θ2

→ δ(x), as θ → 0

In the limit of elastic scattering one comes to the famous formula for the relaxation time

τ−1
F =

4Ze4εF

3π

∫ 2pF

0
dq q3 S(q)F2(q)

|q2 + Πl|2

(
1−

q2

4ε2
F

)



Relaxation time

The photon polarization tensor

The full photon propagator Dµν can be found from the Dyson equation

[D−1]µν = [D−1
0 ]µν −Πµν , Dµν0 = gµν/(ω2 − q2).

The photon polarization tensor Πµν is decomposed into transvers and longitudinal modes

Πµν = ΠtPt
µν + ΠlPl

µν .

The formal solution of the Dyson equation can be written as

Dµν(q, ω) =
1

ω2 − q2

[
gµν +

Πt

ω2 − q2 −Πt
Ptµν +

Πl

ω2 − q2 −Πl
Plµν

]
.

The polarization tensor in the Matsubara space-time at one-loop order is given by the formula

ΠM
µν(q, iωn) = 4πα

∫
dp

(2π)3
T
∑
m∈Z

Tr [γµS(p, iωm)γνS(p− q, iωm − iωn)].

The screening of longitudinal and transversal interactions is determined by the corresponding
components of the polarization tensor. Within the HTL (hard-thermal-loop) effective field
theory of QED (q� p) they are given by the formulae (iωn → ω + iδ)

Πl(q, ω) = −
(

1−
ω2

q2

)
4α
π

∫ ∞
0

p2dp
[
∂f+(ε)

∂ε
+
∂f−(ε)

∂ε

] [
1−

ωε

2pq
log

ωε+ pq
ωε− pq

]
,

Πt(q, ω) = −
2α
π

∫ ∞
0

p2dp
[
∂f+(ε)

∂ε
+
∂f−(ε)

∂ε

] [
ω2

q2
+

(
p2

ε2
−
ω2

q2

)
ωε

2pq
log

ωε+ pq
ωε− pq

]
.



Relaxation time

The photon polarization tensor: low-frequency limit

In the degenerate or ultra-relativistic limits the formulae can be simplified

Πl = q2
D

(
1− x2

)[
1−

x
2v̄

log
x + v̄
x− v̄

]
.

Πt =
1
2

q2
D

[
x2 +

(
v̄2 − x2

) x
2v̄

log
x + v̄
x− v̄

]
.

x = ω/q, v̄ = vF in the degenerate and v̄ = 1 in the ultra-relativistic limits, respectively.

The Debye momentum is given by the formula

q2
D = −

4α
π

∫ ∞
0

p2dp
[
∂f+(ε)

∂ε
+
∂f−(ε)

∂ε

]
.

Dropping the contribution of antiparticles we find in the limiting cases of highly degenerate and
non-degenerate matter

q2
D ' 4α

{
pF εF/π, T � TF,
π ne /T, T � TF.

We use low-frequency x = ω/q� 1 expansions for the polarization tensor to order O(x2)

ReΠl(q, ω) = (1− x2/v̄2)q2
D, ImΠl(q, ω) = −

π

2
(x/v̄)q2

D,

ReΠt(q, ω) = x2q2
D, Im(q, ω) =

π

4
(xv̄)q2

D.



Relaxation time

Relaxation time and the product ωcτ as functions of density

Relaxation time scales as τ ∝ ε1.8ρ−0.9T−δZ−1 with 0.1 ≤ δ ≤ 0.3.

In the degenerate regime

εF ∝ ρ1/3, τF ∝ ρ−0.3, ωcFτF ∝ ρ−0.6
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In the non-degenerate regime

ε̄ ' 3T, τ̄ ∝ ρ−0.9, ω̄cτ̄ ∝ ρ−0.9
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Relaxation time decreases faster in the non-degenerate regime.



Relaxation time

Relaxation time as a function of temperature in both regimes

Relaxation time decreases with the temperature in the degenerate and
increases in the non-degenerate regime. The decrease in the first case
arises solely from the correlation function.

In the degenerate regime

ε→ εF, τF ∝ T−δ, ωcFτF ∝ T−δ

-19

-18

lo
g

1
0
τ

F
 [

s]

0.01 0.1 1
T / T

F

-18

-17

56
Fe

12
C

In the non-degenerate regime

ε̄ ' 3T, τ̄ ∝ T1.75, ω̄cτ̄ ∝ T0.75
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Results

The density dependence of the electrical conductivities

In each regime σ shows a power-law increase with density σ ∝ ρα.
In the deg. regime α ' 0.4, in the non-deg. regime α ' 0.1.
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Results

The temperature dependence of the electrical conductivities

σ decreases with temperature in the deg. regime as σ ∝ T−δ with
0.1 ≤ δ ≤ 0.3 and increases in the non-deg. regime as σ ∝ T0.75.
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The minimum of the conductivity
arises at ”transition” temperature
T∗ ' 0.3TF almost independent
on density and type of nuclei.



Results

Dependence on magnetic field

At high densities or small magnetic fields ωcτ � 1 (isotropic region) and

σ0 ' σ, σ1 ' σωcτ '
B

nee
σ2.

At low densities or strong magnetic fields ωcτ � 1 (strongly anisotropic region) and

σ0 '
σ

(ωcτ)2
'
(

nee
B

)2

σ−1, σ1 '
σ

ωcτ
'

nee
B
.
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σ0 increases with density and decreases with magnetic field.
The temperature behavior of σ0 is reversed to that of σ in anisotropic region.
σ1 has a maximum at ωcτ ' 1 as a function of density and magnetic field.
In anisotropic region σ1 is independent on temperature and type of nuclei.



Results

The temperature dependence of the crust anisotropy

To characterize the anisotropy we consider the ratio σ0/σ.

All curves have a maximum at
T ' T∗ independent of
density, magnetic field and
type of nuclei.

At this maximum the
anisotropy of the crust is the
smallest.

In the degenerate regime the
anisotropy decreases with
temperature.

In the non-degenerate regime
σ0/σ ∝ T−3/2 and the crust
is strongly anisotropic at very
high temperatures.
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Results

Density dependent crust composition

The composition of the crust depends on density and temperature. For not very high
temperatures the β-equilibrium composition derived for T = 0 can be used.

For the conductivity we have the scaling

In the degenerate regime

σ ∝
neτF

εF
∝
(

Z
A

)1/3

Z−1.

In the non-degenerate regime

σ ∝
neτ̄

ε̄
∝ Z−1.

The results of density dependent composi-
tion differ from those of 56Fe less than by
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It is interesting to study the conductivity of warm matter, which is composed of nuclei in
statistical equilibrium, in which case the crust composition may become an important factor.



Results

Fit formulae for three components of the conductivity tensor

We have performed fit to the first component of the conductivity tensor using the formula

σfit = CTa
F

(
T
TF

)−b( T
TF

+ d
)b+c

For the other two components the following fit formulae can be used

σfit
0 =

σ′

1 + δ2σ′2
, σfit

1 =
δσ′′2

1 + δ2σ′′2
.

δ = B(neec)−1, σ′ = σfit(TF/εF)g, σ′′ = σfit(1 + T/TF)h.

The form of the fit formulae reproduces the correct temperature and density dependence
of the conductivity in limiting cases of strongly degenerate and non-degenerate electrons,
as well as in limiting cases of isotropic and strongly anisotropic conduction.

The fit parameters C, a, b, c, d, g, h depend on the ionic structure of the material.

The relative error of the fit formulae vary from 7% to 15% depending on the composition.



Summary

Summary

The electrical conductivity tensor in the outer crust of a NS is calculated in the presence
of non-quantizing magnetic fields.

The linearized Boltzmann kinetic equation is solved in relexation time approximation to
obtain formulae for three components of the conductivity tensor.

The temperature-density range where the ionic component of the crust is in liquid state
has been considered.

The ion-ion correlation is taken into account via OCP 2-point structure factor.

In the electron-ion scattering also the dynamical screening is included.

The electron-ion interaction is implemented in terms of hard-thermal-loop polarization
tensor of QED plasma, taken in the relevant low-frequency limit.

The crust composition has been assumed to be temperature-independent.

The transition from the degenerate to the non-degenerate regime has been studied.

For the components of the conductivity tensor accurate fit formulae are obtained.
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