Change in hard X-rays and optical polarization of the Crab nebula and pulsar

<u>Christian Gouiffès</u>, Philippe Laurent Service d'Astrophysique – CEA Saclay, France

A. Shearer, P. Moran, G. Kyne, G. Hallinan, R. M. Redfern Centre for Astrophysics, NUI Galway, Ireland

I. Cognard LPC2E (UMR 7328) / CNRS - Université d'Orléans, France

MODE-SNR-PWN workshop : Pulsars and their environments, May 2016, Meudon Campus of Paris Observatory

The Crab Nebula and Pulsar

Useful number : at distance = 2kpc, 1'' = 0.009 pc = 2000 au = 3 10^{16} cm

Polarimetry

a powerful tool after imaging, spectroscopy and timing

- related to many radiation processes (synchrotron, curvature, etc)
- can provide extra information to discriminate among different models
 - Solar flares
 - GRBs (prompt emission, afterglow)
 - X-ray binaries (disc, corona, jets)
 - AGNs
 - Cosmic background radiation
 - FRBs (fast radio burst)
 - Pulsars : information of the magnetic environment, radiation emission processes, models) (see G. Voisin's talk yesterday : no polarization from curvature radiation with quantum-electrodynamics treatments, yes otherwise).

Recent window in the high energy domain when mature in radio and optical

Polarization of the Crab nebula/pulsar system

1/ Optical view : HST and GASP

2/ Hard X-rays view : INTEGRAL

3/ On-going work and perspectives

Optical Polarimetry of the Crab Nebula & Pulsar : HST data

- Observations of nebula with HST/ACS (0, 60 & 120⁰) September December 2005
- Why Polarisation? Constrain emission models

Optical Polarimetry of the Crab Nebula & Pulsar

- Measured the degree of linear polarisation (%) and position angle (°) of the pulsar, knot, and wisps
- Used IMPOL software (Walsh 1999) to map polarisation of inner nebula
- Aperture photometry for count rates of targets in each polariser: r (0), r (60), r (120)
- Count rates ⇒ Stokes parameters ⇒ Polarisation

$$I = \frac{2}{3} \left[r(0) + r(60) + r(120) \right]$$

$$Q = \frac{2}{3} \left[2r(0) - r(60) - r(120) \right]$$

$$U = \frac{2}{\sqrt{3}} \left[r(60) - r(120) \right]$$

$$\begin{split} \mathrm{P.D.} &= \frac{\sqrt{\mathrm{Q}^2 + \mathrm{U}^2}}{\mathrm{I}} \; \frac{\mathrm{T}_{\mathrm{par}} + \mathrm{T}_{\mathrm{perp}}}{\mathrm{T}_{\mathrm{par}} - \mathrm{T}_{\mathrm{perp}}} \times 100 \\ \mathrm{P.A.} &= \frac{1}{2} \; \mathrm{tan}^{-1} \left(\frac{\mathrm{U}}{\mathrm{Q}} \right) + \mathrm{PA_{-}V3} + \chi \end{split}$$

Optical Polarisation with the Galway Astronomical Stokes Polarimeter (GASP)

- Ultra-high speed, Full Stokes, Astronomical Imaging Polarimeter
- Division of Amplitude Polarimeter (DOAP)
- Linear & Circular polarisation
- Studies(~ms) variations in optical pulsars and magnetic CVs

Optical Layout of GASP: light path through DOAP from telescope focus to detectors (Kyne et al. 2012)

GASP Instrument and system

Palomar, 5 meter telescope

GASP observation in 2012, November

Crab Optical and γ -Ray polarization 7

Waveband	Instrument	Observation	Component	Polarization $(\%)$	Position Angle (°)	Reference
		Year				
γ -ray	Integral/IBIS	2003-07	Phase-avg ^{a} 300-450 keV	$96{\pm}34$	115 ± 11	[1]
γ -ray	Integral/IBIS	2012 - 14	Phase-avg $300-450 \text{ keV}$	98 ± 37	$80{\pm}12$	[1]
Optical	RGO-PP/INT	1988	Phase-avg	9.8	117	[2]
Optical	HST/ACS	2005	Pulsar	5.2 ± 0.3	$105.1 {\pm} 1.6$	[3]
Optical	HST/ACS	2005	Knot	$59.0 {\pm} 1.9$	124.7 ± 1.0	[3]
Optical	HST/ACS	2005	Pulsar+Knot	7.7 ± 0.1	$109.5 {\pm} 0.7$	[1]
Optical	GASP/Hale 200''	2012	Pulsar+Knot	$9.6{\pm}0.5$	85.3 ± 1.4	[1]
Optical	GASP/Hale $200^{\prime\prime}$	2012	Pulsar+Knot (circular pol.)	-1.2 ± 0.4	-	[1]

Table 2. Summary of the multi-wavelength polarimetry of the Crab nebula and pulsar.

^a The phase-avg refers to the average polarization over many pulsar rotations P_{i} (a) P_{i} (a) P_{i} (a) P_{i} (a) P_{i} (b) P_{i} (c) P_{i} (

Reference: $\left[1\right]$ This work, $\left[2\right]$ Smith et al. (1988), $\left[3\right]$ Moran et al. (2013)

Table 3.	Optical polarimetry	of the Crab pulsar	and knot field of view	. The F606W filt	ter corresponds to λ :	$= 590.70 \text{ nm and } \Delta$	$\Delta \lambda = 250.00$
nm.							

Target	Instrument	Observation Year	Filter	Polarization (%)	Position Angle (°)	Reference
Pulsar	HST/ACS	2005	F606W	$5.2 {\pm} 0.3$	$105.1 {\pm} 1.6$	Moran et al. 2013
Pulsar	OPTIMA	2003	V+R	$5.4 {\pm} 0.1$	$96.4{\pm}0.2$	Słowikowska et al. 2009
Pulsar+Knot	HST/ACS	2005	F606W	$7.7 {\pm} 0.1$	$109.5 {\pm} 0.7$	This work
Pulsar+Knot	OPTIMA	2003	V+R	$9.8 {\pm} 0.1$	$109.5 {\pm} 0.2$	Słowikowska et al. 2009
Pulsar+Knot	GASP/Hale 200''	2012	R	$9.6 {\pm} 0.5$	85.3 ± 1.4	This work
Trimble 28	GASP/Hale $200^{\prime\prime}$	2012	R	$6.5 {\pm} 0.3$	$60.9 {\pm} 2.7$	This work

Result (Optical)

Ν

Ε·

Optical + Hard X-rays

INTEGRAL (International Gamma-ray Astrophysics Laboratory)

- Launched 17th October 2002
- Operational lifetime: 10+ years (at least December 2016)
- 4 Science Instruments:
 - SPI (Spectrometer on Integral)
 IBIS (Imager onboard Integral Satellite)
 JEM-X (Joint European X-ray Monitor)
 OMC (Optical Monitoring Camera)
- Scientific Cases:
 - AGN & Black Holes
 - X-ray Binaries
 - Neutron Stars
 - Gamma-ray Bursts
 - Galactic Centre & Nucleosynthesis

IBIS (Imager on Board the INTEGRAL Satellite)

Gamma-ray imager with two detector layers:

ISGRI (Integral Soft Gamma-Ray Imager)
semi-conductor, CdTe, 2600 cm² (18 Kev – 1 MeV)

PICsIT (PIxellated Ceasium Iodide Telescope)
- crystal scintillator, CsI, 3000 cm² (175 Kev – 10 Mev)

• Energy resolution (FWHM) = 8% @ 100 keV

• Angular resolution (FWHM) = 12'

Polarimetry: IBIS Compton mode

- Compton Scattering of photons between ISGRI & PICsIT:
 - "Compton Events" temporal coincidences within 3.8 µs
 - "Spurious Events" chance coincidences within this window
 - Events: Background 92%, Spurious 6%, Source 2%
 - Polarimetry inferred from Scattering azimuth

The IBIS/Compton telescope

The Compton mode events are ISGRI and PICSIT events in temporal coincidence, within a window $\tau_W \approx 3.8 \ \mu s$.

IBIS Compton mode advantages

- Utilises abilities of both a coded mask and Compton telescope:
 - Reconstructs sky images
 - High angular resolution
 - Very low background (~ 90 count/s)
 - Use Compton kinetics to further reduce background, by selecting events coming only from coded mask FOV

Data: Observations & Analysis

• Continuation of work done by Forot et al. 2008, Moran et al. 2013 (Integral conference).

- Use Jodrell Bank ephemeris for pulsar phase-folding
- Event selection (energy range, pulse phase)
- Spurious events correction
- Uniformity correction
- Coded mask deconvolution

Compton polarimetry principles

Compton scattering cross section max for photons scattered at right angle to $S = S[1 + a_0 \cos(2(\phi - \phi_0))]$ direction of incident electric vector \Rightarrow asymmetry in azimuthal profile S of scattered events

Modulation:

- a = modulation factor
- a₁₀₀ = modulation for 100% polarised source
- pol. frac. = PF = a/a₁₀₀
- pol. angle = PA = $\phi_0 \pi/2 + n\pi$
- a₁₀₀ estimate: GEANT3/GLEPS simulation for 100% linearly polarised source
- a₁₀₀ = 0.304 ± 0.003 for Crab-like spectrum

Results

Deconvolved significance map of Crab pulsar (Compton mode, 200-800 keV, 1 Ms)

INTEGRAL/ISGRI lightcurve of the Crab pulsar, 20-120 Kev, 300 Ks, 100 bins.

INTEGRAL/Compton lightcurve of the Crab pulsar, 200-600 keV, 2.6 Ms.

Results : azimuthal Profiles (300 – 450 keV)

2003 - 2007 data $\Theta = 115 \pm 11^{\circ}$ PF = 96 ± 34 %

2012 - 2014 data $\Theta = 80 \pm 12^{\circ}$ PF = 98 ± 37 %

True change of polarization angle ?

Probability densities for the two sets of observations (red : 2012 – 2014; black : 2003 – 2007). Vertical bars are optical measurements. There is a 11% probability that the true polarization is > 100° in 2012 – 2014 (red).

Crab Optical and γ -Ray polarization 7

Waveband	Instrument	Observation Year	Component	Polarization $(\%)$	Position Angle (°)	Reference
γ -rav	Integral/IBIS	2003-07	Phase-avg ^{a} 300-450 keV	96 ± 34	115±11	[1]
γ -ray	Integral/IBIS	2012-14	Phase-avg 300-450 keV	98 ± 37	80 ± 12	$\begin{bmatrix} 1 \end{bmatrix}$
Optical	RGO-PP/INT	1988	Phase-avg	9.8	117	[2]
Optical	HST/ACS	2005	Pulsar	5.2 ± 0.3	105.1 ± 1.6	[3]
Optical	HST/ACS	2005	Knot	59.0 ± 1.9	124.7 ± 1.0	[3]
Optical	HST/ACS	2005	Pulsar+Knot	$7.7 {\pm} 0.1$	$109.5 {\pm} 0.7$	[1]
Optical	GASP/Hale 200"	2012	Pulsar+Knot	$9.6 {\pm} 0.5$	85.3 ± 1.4	[1]
Optical	GASP/Hale 200''	2012	Pulsar+Knot (circular pol.)	-1.2 ± 0.4	-	[1]

Table 2. Summary of the multi-wavelength polarimetry of the Crab nebula and pulsar.

 $^{a\,}$ The phase-avg refers to the average polarization over many pulsar rotations

Reference: [1] This work, [2] Smith et al. (1988), [3] Moran et al. (2013)

Table 3. Optical polarimetry of the Crab pulsar and knot field of view. The F606W filter corresponds to $\lambda = 590.70$ nm and $\Delta \lambda = 250.00$ nm.

Target	Instrument	Observation Year	Filter	Polarization (%)	Position Angle (°)	Reference
Pulsar Pulsar Pulsar+Knot Pulsar+Knot Pulsar+Knot G	HST/ACS OPTIMA HST/ACS OPTIMA GASP/Hale 200″	2005 2003 2005 2003 2012	F606W $V+R$ $F606W$ $V+R$ R	5.2 ± 0.3 5.4 ± 0.1 7.7 ± 0.1 9.8 ± 0.1 9.6 ± 0.5	$105.1 \pm 1.6 \\96.4 \pm 0.2 \\109.5 \pm 0.7 \\109.5 \pm 0.2 \\85.3 \pm 1.4$	Moran et al. 2013 Słowikowska et al. 2009 This work Słowikowska et al. 2009 This work

Optical + Hard X-rays

Questions and Conclusions

- Origine of the change in optical and hard X-rays polarisation : Magnetic reconnection ?
- Time scale of the change (hours, days, week, year ?)
- What are the links with high energy flares ?
- Where come from the observed change (knot, near-by pulsar?)

In a perfect world : phase resolved spectro-imaging-polarimetry with sub–arc second resolution with coordinnated observations during flaring activities

- The Crab nebula is not a polarimetric standard !
- It is also not standard in the high energy gamma-ray domain (Fermi, Agile flares).

- ⇒ Useful source to understand high energy sources variability (GRB, AGN, ...) where reconnection processes have been suggested.
- \Rightarrow Illustrate the power of polarimetric measurements.

Conclusions - bis

- Polarimetry provides an unique insight to pulsar emission geometries & constrains theoretical models of emission
- First multi-wavelength & multi-epoch study of polarisation of inner Crab Nebula and pulsar
- Optical & Gamma-ray comparisons ongoing + Radio (in particular with <u>GRP studies)</u>
- Mapped optical polarisation of the inner nebula
- Off-pulse emission (DC) highly polarised due to Knot
- PA of E-vector of NS, spin-axis, and proper-motion aligned
- More multi-wavelength polarisation studies of pulsars needed

On-going work

- new observations in 2015 (in optical at WHT and in hard X-rays with Integral)
- Phase resolved polarimetric studies
- Simultaneous optical + radio data (Nançay/NRT) : GRP's connection

News at MODE 2017

COSMIC VISION (2016-2035)

COSMIC VISION (2016-2035)

INTEGRAL is for the next decade the only ESA hard X-ray/low gamma-ray mission (with in particular a polarimetric mode) !