The population of Pulsar Wind Nebulae as observed in TeV γ -rays

Yves Gallant¹

(with numerous H.E.S.S. collaborators, particularly S. Klepser, M. Renaud...)

¹ LUPM, CNRS / IN2P3, U. de Montpellier, France

MODE-SNR-PWN 2016 Workshop

Observatoire de Paris, Meudon, May 19, 2016

Introduction: TeV γ -rays and the Crab Nebula TeV PWN luminosities and distribution PWN extension and offset evolution Future prospects and CTA PWNe in TeV γ -rays

Yves Gallant Meudon, 19/5/2016

TeV (Very-High-Energy) γ -ray astronomy

- GeV (High-Energy) γ -rays with satellites (e.g. *Fermi*-LAT)
- at high E_{γ} , limited by calorimeter depth and collecting area
- TeV: use Earth's atmosphere as detector, through Cherenkov light from electromagnetic shower (on dark, moonless nights)
- past decade(+) : current generation of *Imaging Atmospheric* Cherenkov Telescope (IACT) experiments
- ▶ large mirrors, fine pixels, stereo technique \Rightarrow high sensitivity

HESS-II IACT system (Namibia)

- ► HESS-I: 4 mirrors of 12 m diameter; HESS-II: +28 m-diameter
- similar principles: MAGIC-II (Canary Isl.), VERITAS (Arizona)

PWNe in TeV γ -rays

Yves Gallant Meudon, 19/5/2016 Intro: TeV and Crab TeV luminosities

zes and offsets rospects with CTA

Summary

TeV γ -ray spectrum of the Crab Nebula

• "standard candle" of TeV γ -ray astronomy since its discovery

- ► synchrotron emission in most of the electromagnetic spectrum, from e^{\pm} accelerated in the pulsar, wind, termination shock (?)
- TeV γ-ray emission results from *Inverse Compton* scattering of lower-energy photons (synchrotron, CMB, IR, starlight...)
- ▶ (hadronic contributions also proposed, e.g. Horns et al. 2007)
- ▶ PWNe important sources of high-energy cosmic-ray e^+ (and e^-)
- main astrophysical candidates to explain e[±] excess measured by PAMELA, *Fermi*-LAT, AMS-02...

PWNe in TeV γ -rays

Galactic TeV γ -ray sources and PWNe

- ► HESS Galactic plane survey : longitudes $\ell \approx +65^{\circ}$ to -110°
- ▶ long-term, multi-stage survey (2004–2012); highly non-uniform
- in time, strategy to achieve more uniform minimal sensitivity

HESS excess map (Donath et al., H.E.S.S., 2015 ICRC)

- currently $\gtrsim 100$ Galactic TeV sources known (>75 in HGPS)
- ~30% identified as pulsar wind nebulae (PWNe) or candidates (HESS PWN population paper in preparation; here preliminary results)

PWNe in TeV $\gamma\text{-rays}$

Yves Gallant Meudon, 19/5/2016

TeV γ -ray luminosity distribution of PWNe

► PWN TeV luminosities $L_{\gamma} = 4\pi D^2 F_{0.3-30 \text{ TeV}}$, plotted against (current) pulsar spin-down energy loss \dot{E}

PWNe in TeV γ -rays

Yves Gallant Meudon, 19/5/2016

TeV luminosities Sizes and offsets Prospects with CTA Summary

- ► relatively narrow range of L_{γ} ($\gtrsim 1$ decade, with outliers)
- little correlation with \dot{E} , unlike L_X (Grenier 2009, Mattana+ 2009)
- ► add HESS GPS upper limits ⇒ faintening trend significant (Klepser et al., H.E.S.S., 2015 ICRC)
- TeV γ-rays reflect history of injection since pulsar birth, whereas X-rays trace recently injected particles

PWN magnetic evolution and L_X/L_{TeV}

- ▶ naive interpretation of L_X/L_{TeV} suggests *B* decrease with age
- ► difference of electron lifetime also plays a role (for B < 30µG, more pronounced as B decreases)</p>
- Torres et al. (2014) model young TeV-detected PWNe [see also Tanaka & Takahara (2010,2011), Bucciantini et al. (2011), ...]
- ▶ Crab, G0.9+0.1, G21.5–0.9, MSH 15–52, Kes 75, ..., modelled with broken power-law injection, 1.0 < p₀ < 1.5, p₁ = 2.2–2.8

 \blacktriangleright L_X/L_γ ratio evolution dominated by *B*-field decrease with age

main target photons for Inverse Compton are Galactic far-IR

PWNe in TeV γ -rays

Yves Gallant Meudon, 19/5/2016

Intro: TeV and Crab TeV luminosities Sizes and offsets Prospects with CTA

・ロト・日本・日本・日本・日本・日本・日本

Galactic distribution of TeV PWNe

- with simulated SNR distribution (using Cordes & Lazio 2002)
- PWNe trace recent massive star formation (spiral arms)

- HESS GPS detectability quite good to Scutum-Crux arm
- deficit of TeV-emitting PWNe in Sagittariux-Carina arm?
- ▶ PWNe in outer Galaxy (Vela X, 3C 58...) have low luminosities
- \Rightarrow correlation of L_{TeV} with ambient (far-IR) photon density?

PWNe in TeV γ-rays Yves Gallant Meudon, 19/5/2016 Intro: TeV and Crab TeV luminosities Sizes and offsets Prospects with CTA Summary

ロト・日本・日本・日本・日本・ショー

TeV morphology: composite SNR evolution

- ▶ pulsars are born in (core-collapse) supernovae (type II / Ib,c)
- Crab Nebula unusual in that SN remnant shock not detected : purely "plerionic" (center-filled) SNR
- more generally, PWNe inside classical, shell-type SNR : "composite" SNR

G11.2-0.3

X-ray (Chandra) images

G 21.5–0.9

Kes 75

- thermal X-ray emission from shocked supernova ejecta
- non-thermal (synchrotron) emission near two acceleration sites :
 - blast wave of initial explosion : SNR shell (forward shock)
 - pulsar (wind termination shock) : pulsar wind nebula

PWNe in TeV γ -rays

Yves Gallant Meudon, 19/5/2016

Intro: TeV and Crab TeV luminosities Sizes and offsets Prospects with CTA Summary

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = ∽ へ ⊙

PWN TeV size evolution

significant trend of expansion with characteristic age

 consistent with PWN supersonic "free" expansion initially, followed by slower subsonic expansion (after reverse shock "informs" PWN about surrounding medium) PWNe in TeV γ -rays

Yves Gallant

Meudon, 19/5/2016

Intro: TeV and Crab TeV luminosities Sizes and offsets

Prospects with CTA

Summary

Older, "offset" PWNe

► TeV emission from the Vela X nebula (HESS 2006)

PWNe in TeV γ -rays

Yves Gallant

Meudon, 19/5/2016

- ► IC emission ∝ (approximately uniform) target photon density ⇒ direct inference of spatial distribution of electrons
- fainter emission from whole radio nebula (HESS 2012)
- ► compact X-ray nebula not conspicuous in TeV γ-rays ⇒ torii and jets bright in X-rays because of higher magnetic field
- source offset from pulsar position; not due to pulsar motion
- two TeV PWNe in Kookaburra, and HESS J1356–645 are in same category (though no SNR shells)

TeV PWN offsets vs. age

▶ here plotted in terms of corresponding "velocity" \equiv offset / τ_c

(Klepser et al., 2015 ICRC)

- older TeV PWNe have large offsets
- ► cannot be explained by typical pulsar proper motions (observed distribution implies v_⊥ < 500 km/s for most)</p>
- suggests alternative asymmetric PWN "crushing" scenario...

PWNe in TeV γ -rays

Yves Gallant

Meudon, 19/5/2016

Intro: TeV and Crab TeV luminosities Sizes and offsets Prospects with CTA

Summary

PWNe in older composite SNRs

- reverse shock eventually contacts PWN at SNR center
- PWN is initially "crushed" by shocked ejecta pressure
- in spherically symmetric simulations (e.g. van der Swaluw et al. 2001), several reverberations before slower, steady expansion

- in more realistic 2D, Rayleigh-Taylor instabilities can mix plerion and ejecta (Blondin, Chevalier & Frierson 2001)
- asymmetries in medium can shift or "offset" PWN from pulsar
- eventually settles to "subsonic" expansion inside Sedov-phase remnant (e.g. van der Swaluw et al. 2001)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

PWNe in TeV γ -rays

Yves Gallant Meudon, 19/5/2016

CTA (Cherenkov Telescope Array) project

next generation of imaging atmospheric Cherenkov telescopes

- one order of magnitude sensitivity improvement over current generation of IACT instruments (e.g. HESS or MAGIC)
- energy range from few \times 10,GeV to few \times 100 TeV
- ► two sites : Northern and Southern Hemisphere (latter better for Galactic physics ⇒ higher energy)

PWNe in TeV γ -rays

Yves Gallant

Meudon, 19/5/2016

Galactic PWN population seen by CTA

- ▶ PWNe with Crab luminosity detectable to LMC (in 50 hours)!
- ► fainter, inner Galactic TeV PWNe $(L_{0.3-30 \text{ TeV}} \sim 10^{34} \text{ erg/s})$
- simulate Galactic (core-collapse) SNR distribution
- ► Ignore displacement from pulsar birth place due to velocity kick

Horizon of detectability

- ▶ fainter PWNe detectable to 10–15 kpc (depend. on object, config.)
- ▶ if all PWNe shine several × 10⁴ yr in TeV, several 100 PWNe! (Dubus et al. 2013)

PWNe in TeV γ -rays

Yves Gallant Meudon, 19/5/2016

Summary and prospects

 H.E.S.S. Galactic Plane Survey is yielding new inferences on the population of Pulsar Wind Nebulae in TeV γ-rays

PWN TeV γ -ray luminosities

- vary little with pulsar *E* or age (in contrast to X-ray synchrotron luminosity, from shorter-lived electrons)
- often dominated by inverse Compton on ambient far-IR photons

TeV PWN sizes and offsets

- clearly resolved trend of PWN expansion with age
- older PWNe are offset, more than due to pulsar velocities
- due to "crushing" by asymmetric reverse shock?

Prospects with CTA

- could detect PWNe across a major fraction of the Galaxy
- population study of star formation / spiral arm environment

PWNe in TeV $\gamma\text{-rays}$

Yves Gallant Meudon, 19/5/2016

PWNe in TeV γ -rays

Yves Gallant

Meudon, 19/5/2016

Intro: TeV and Crab TeV luminosities Sizes and offsets Prospects with CTA Summary

Supplementary slides

▲□▶▲□▶▲□▶▲□▶ = のへで

Subsequently identified young PWNe in SNRs The progressive identification of HESS J1813–178

 Brogan et al. (2005) revealed its coincidence with a shell-type radio SNR (and ASCA source)

 Chandra revealed a pulsar candidate (Helfand et al. 2007) XMM revealed an extended non-thermal nebula inside the shell (Funk et al. 2007a)

• XMM found pulsed emission, $\dot{E} = 5.6 \times 10^{37}$ erg/s (Gotthelf & Halpern 2009)

PWNe in TeV γ -rays

Yves Gallant Meudon, 19/5/2016