NEUTRON STAR RADII AND CRUSTS: UNCERTAINTIES AND UNIFIED EQUATIONS OF STATE

MORGANE FORTIN fortin@camk.edu.pl

N. Copernicus Astronomical Center (CAMK), Polish Academy of Sciences, Poland

MODE-SNR-PWN workshop, Meudon, May 2016

MORGANE FORTIN (CAMK)

Astrophysical constraints: radius

Fitting the spectrum of

- X-ray emission from radio millisecond pulsars (RP-MSP);
- X-bursts from accreting NSs (BNS);
- the quiescent thermal emission of accreting NSs (QXT).

Summary

Based on most recent publications. Adapted from Fortin et al. A&A (2015)

- RP-MSP: Bodganov, ApJ (2013)
- BNS-1: Nättilä et al. arXiv:1509.06561
- BNS-2: Güver & Özel, ApJ (2013)
- QXT-1: Guillot & Rutledge, ApJ (2014)
- BNS+QXT: Steiner et al., ApJ (2013)

Conclusion

- marginally consistent (see QXT-1 and RP-MSP),
- many remaining uncertainties in the modelling,
- ► inclusion of rotation: effect ~ 10%.
- ▶ future X-ray telescopes (NICER, Athena, LOFT?): M - R constraints with a precision of ~ 5%

Context: equation of state (EoSs) and hyperons (Y)

Equation of state

M - R plot

Hyperons

- reduce the pressure in the inner core. ie. softening of the EoS;
- reduce the maximum mass.

Claims that $M_{
m max} \geq 2 \, M_{\odot}$ rules out hyperonic equations of state . . .

Hyperonic equations of state and radii

Fortin, Zdunik, Haensel and, Bejger, A&A (2015)

Radius of a $1.4 M_{\odot}$ NS

- 14 hyperonic with $M_{\rm max} \ge 2 M_{\odot}$, all but one (Yamamoto et al. PRC 2014) are RMF models;
- 3 nucleonic as reference.

Hyperonic EOS: for $M \in [1.0 - 1.6]$ M_{\odot} , R > 13 km.

Hyperonic equations of state and radii

Fortin, Zdunik, Haensel and, Bejger, A&A (2015)

Pressure at $n_0 = 0.16$ fm⁻³ near the core-crust transition

- large radius for Y.EoSs correlated with a large pressure at n₀.
- $\label{eq:max_max_loss} \begin{array}{l} \rightarrow & M_{\rm max} \geq 2\,M_{\odot} \mbox{ possible if the decrease in the pressure at high density due to Y is compensated by a large pressure at low density. \end{array}$

Hyperonic equations of state and radii

Fortin, Zdunik, Haensel and, Bejger, A&A (2015)

Pressure at $n_0 = 0.16$ fm⁻³ near the core-crust transition

- large radius for Y.EoSs correlated with a large pressure at n₀.
- $ightarrow M_{max} \ge 2 \, M_{\odot}$ possible if the decrease in the pressure at high density due to Y is compensated by a large pressure at low density.
 - gray strip: chiral effective field theory calculations up to n₀ (Hebeler et al. ApJ 2013).
- over-pressure at n₀ for hyperonic EOS inconsistent with this constraint.

Recent work

Oertel et al. JPG (2015): hyperonic EoS consistent with Hebeler et al. constraint and with $M_{\rm max} \geq 2\,M_{\odot}.$

How to glue core and crust: NL3 & DH?

Fortin, Providência, Raduta, Gulminelli, Zdunik, Haensel, & Bejger, arXiv:1604.01944

- core glued to BPS+BBP EOS at 0.01 fm⁻³;
- transition at the crossing density between the 2 EoSs;
- transition at the core-crust transition density n_t;
- transition at $n_0 = 0.16 \text{ fm}^{-3}$;
- crust below $0.5n_0$ and core above n_0 ;
- crust below $0.1n_0$ and core above n_t ;
- ► reference: unified EoS.

Uncertainty on R

- due to the treatment of the core-crust transition: up ~ 4% (up to ~ 30% on the crust thickness),
- decreases if crust and core EOS with similar saturation properties.

NS RADII AND CRUSTS: UNCERTAINTIES AND UNIFIED EOS

How to glue core and crust: NL3 & DH?

Fortin, Providência, Raduta, Gulminelli, Zdunik, Haensel, & Bejger, arXiv:1604.01944

- core glued to BPS+BBP EOS at 0.01 fm⁻³;
- transition at the crossing density between the 2 EoSs;
- transition at the core-crust transition density n_t;
- transition at $n_0 = 0.16 \text{ fm}^{-3}$;
- crust below $0.5n_0$ and core above n_0 ;
- crust below $0.1n_0$ and core above n_t ;
- ► reference: unified EoS.

Uncertainty on R

- due to the treatment of the core-crust transition: up $\sim 4\%$
- ▶ with NICER, Athena or LOFT(?): expected precision ~ 5%
- how to, if not solve, at least handle this problem?
 NS RADII AND CRUSTS: UNCERTAINTIES AND UNIFIED EQS

1. Thermodynamically consistent 'gluing'

Fortin, Providência, Raduta, Gulminelli, Zdunik, Haensel, & Bejger, arXiv:1604.01944

EOS as a function of n

- crust EOS: $P_{cr}(n)$, $\rho_{cr}(n)$
- core EOS: $P_{co}(n)$, $\rho_{co}(n)$
- matching between n_1 and $n_2 > n_1$.

Matched EOS: P(n), $\rho(n)$

- for $n < n_1$, $P(n) = P_{cr}(n)$
- for $n > n_2$, $P(n) = P_{co}(n)$
- ▶ for $n_1 < n < n_2$, assume P(n) with $P(n_1) = P_{cr}(n_1) \& P(n_2) = P_{co}(n_2)$.
- for $n < n_1$, $\rho(n) = \rho_{cr}(n)$
- for $n_1 < n < n_2$, $\rho(n) = n\mu(n) P(n)$ with $\mu(n) = \mu_1 + \int_{n_1}^n \frac{dP(n)}{n}$
- for $n > n_2$, $\rho(n) = \rho_{co}(n) + n(\mu(n_2) - \mu_{co}(n_2))$
- affect the M R relation

EOS as a function of ρ

- crust EOS: $P_{cr}(\rho), n_{cr}(\rho)$
- core EOS: $P_{co}(\rho)$, $n_{co}(\rho)$
- matching between ρ_1 and $\rho_2 > \rho_1$.

Matched EOS: $P(\rho)$, $n(\rho)$

- for $\rho < \rho_1$, $P(\rho) = P_{cr}(\rho)$
- for $\rho > \rho_2$, $P(\rho) = P_{co}(\rho)$
- for $\rho_1 < \rho < \rho_2$, assume $P(\rho)$ with $P(\rho_1) = P_{cr}(\rho_1) \& P(\rho_2) = P_{co}(\rho_2)$.
- for $\rho < \rho_1$, $n(\rho) = n_{cr}(\rho)$
- for $\rho_1 < \rho < \rho_2$, $n(\rho) = n_1 \exp\left(\int_{\rho_1}^{\rho} \frac{\mathrm{d}\rho}{P(\rho) + \rho}\right)$.
- for $n > n_2$, $n(\rho) = n_{co}(\rho)n(\rho_2)/n_{co}(\rho_2)$.
- affect the model of dense matter

2. Approximate formula for the radius and crust thickness

Zdunik, Fortin, and Haensel, in prep.

How?

- All you need is ...: the core EOS down to a chosen density n_b with µ(n_b) = µ_b.
- Obtain the *M*(*R*_{core}) relation solving the TOV equations.
- Obtain M(R) with

$$R = R_{\rm core} / \left(1 - \left(\frac{\mu_{\rm b}^2}{\mu_0^2} - 1 \right) \left(\frac{R_{\rm core} c^2}{2GM} - 1 \right) \right)$$

where $\mu_0 = \mu(P = 0) = 930.4 \text{ MeV} - minimum energy per nucleon of a bcc lattice of ⁵⁶Fe.$

Results

- uncertainty in the radius: \lesssim 1% for $M > 1 M_{\odot}$
- Incertainty in the crust thickness: ~ 1% for M > 1 M_☉

Solution of the TOV equation with a unified EoS TOV solution for the core $M(R_{\rm core})$ Approximate M(R) for $n_{\rm b} = 0.077$ fm⁻³

2. Approximate formula for the radius and crust thickness

Zdunik, Fortin, and Haensel, in prep.

How?

- All you need is ...: the core EOS down to a chosen density n_b with µ(n_b) = µ_b.
- Obtain the *M*(*R*_{core}) relation solving the TOV equations.
- ► Obtain *M*(*R*) with

$$R = R_{\text{core}} / \left(1 - \left(\frac{\mu_{\text{h}}^2}{\mu_0^2} - 1\right) \left(\frac{R_{\text{core}}c^2}{2GM} - 1\right) \right)$$

where $\mu_0 = \mu(P = 0) = 930.4 \text{ MeV} - minimum$ energy per nucleon of a bcc lattice of ⁵⁶Fe.

Results

- uncertainty in the radius: \lesssim 1% for $M > 1 M_{\odot}$
- uncertainty in the crust thickness: $\sim 1\%$ for $M > 1 M_{\odot}$

Solution of the TOV equation with a unified EoS TOV solution for the core $M(R_{core})$ Approximate M(R) for $n_{\rm b} = 0.16, 0.13, 0.11, 0.09, 0.077$ fm⁻³ from left to right.

3. Unified equations of state

Very few unified EoSs for NSs exist eg. DH (Douchin & Haensel 2001), BSk (Brussels Uni.)

Fortin, Providência, Raduta, Gulminelli, Zdunik, Haensel, & Bejger, arXiv:1604.01944

9 RMF models

NL3, NL3 $_{\omega\rho}$, DDME2, GM1, TM1, DDH δ , DD2, BSR2, and BSR6 with

- ▶ outer-crust non consistently calculated but hardly affect the *M* − *R* relations
- inner-crust with pasta phase from Thomas-Fermi calculations
- noY: a purely nucleonic core
- ► Y: a transition to hyperonic matter in the core: SU(6) with the ϕ meson; $U_{\Lambda}^{N}(n_{0}) = -28$ MeV, $U_{\Sigma}^{N}(n_{0}) = 30$ MeV, $U_{\Xi}^{N}(n_{0}) = -18$ MeV
- ► Yss: a transition to hyperonic matter in the core: SU(6) with the ϕ and σ^* mesons; $U_{\Lambda}^{\Lambda}(n_0) = -5$ MeV, $U_{\Xi}^{\Xi} \simeq 2U_{\Lambda}^{\Lambda}, g_{\sigma^*\Sigma} = g_{\sigma^*\Lambda}$

24 Skyrme models

SKa, SKb, Skl2, Skl3, Skl4, Skl5, Skl6, Sly2, Sly230a, Sly9, SkMP, SKOp, KDE0V, KDE0V1, SK255, SK272, Rs, BSk20, BSk21, BSk22, BSk23, BSk24, BSk25, and BSk26 with

- ▶ purely nucleonic core, causal up to 2 M_☉
- compressible liquid drop model
- no shell effect and curvature terms

3. Unified equations of state

33 nucleonic EoSs and 17 hyperonic EoSs

- tables with n, ρ, P as supplemental material to the paper (for observers mainly)
- available on the open-source CompOSE database: http://compose.obspm.fr/

Fits by piecewise polytropes à la Read et al. PRD (2009)

In progress

Potential applications to:

- I-Love-Q relations
- modelling of binary neutron star systems

with different crust models and thus consistent models.

MORGANE FORTIN (CAMK)

Comparison with nuclear constraints

- a Low-density constraints from Hebeler et al. ApJ (2013): chiral effective field theory; Gandolfi et al. PRC (2012): Quantum Monte Carlo technique
- b Incompressibility: $K = 230 \pm 40$ MeV
- c L J constraints see eg. Lattimer
 & Steiner, EPJA (2015)

- all constraints: DDME2
- constraint a±10%+ constraints b+c: DD2, NL3ωρ and Sly9.

 $R_{1.4} = 13.10 \pm 0.65$ km.

Nucleonic DUrca process

▶ $n \rightarrow p + e^- + \bar{\nu}_e$ and $p + e^- \rightarrow n + \nu_e$

• momentum conservation \rightarrow density $n_{\rm DU}$ and mass $M_{\rm DU}$ threshold

Additional DUrca processes for hyperonic EOS.

- Beznogov & Yakovlev MNRAS (2015): DUrca process needed to explain the thermal emission of isolated and accreting NS.
- For $L \gtrsim 70$ MeV, DUrca process always on for $M > 1.5 M_{\odot}$.
- For L ≤ 70 MeV, EOS with DUrca and others without.
- L − J plane: the intersection of all constraints gives L ≤ 70 MeV.
- ▶ Popov et al. A&A (2006): population synthesis of isolated NS requires $M_{\rm DU} > 1.5 M_{\odot}$.

Conclusions

- ► Most hyperonic EoSs consistent with 2 M_☉ have a large R_{1.4} and overpressure close to saturation density.
- Treatment of the gluing of non-unified core and crust EoSs introduces an uncertainty on the radius that can be as large as the expected precision from NICER, Athena or LOFT(?).
- Approximate formula for M(R) as a function of $M(R_{core})$.
- Development of unified nucleonic and hyperonic EoSs based on 9 RMF and 24 Skyrme models;
- available on the CompOSE database: http://compose.obspm.fr and as supplemental material to the paper;
- confrontation with nuclear constraints and selection of 4 EoS.

Perspectives

- calculation of fits by piecewise polytropes for various applications,
- study of rotating NS (Keplerian frequency, minimum mass, ...) with LORENE and of the surface gravitational redshift (spectral lines),
- development of more EOS consistent with Hebeler et al. constraint and $2 M_{\odot}$.