

Disentangling the hadronic from the leptonic emission in the composite SNR G326.3-1.8

J. Devin, F. Acero, J. Schmid, J. Ballet on behalf of the Fermi LAT collaboration

> Workshop MODE 19th May 2016

Aim

Study of the acceleration of cosmic rays by gamma-ray emission in supernova remnant and pulsar wind nebulae

Tycho spectrum (SN 1572)

3 main processes : synchrotron, Inverse Compton, Π^0 decay

J. Devin

— Workshop MODE - SNR - PWN —

SNR G326.3-1.8

3 main processes : synchrotron, Inverse Compton, Π^0 decay

J. Devin

— Workshop MODE - SNR - PWN —

SNR G326.3-1.8

Composite supernova remnant

The gamma-ray satellite FERMI

- 11 Juin 2008
- 20 MeV 300 GeV
- Whole scan each 3 hours
- See 20 % of the sky at any time

Pass 8 performances

Evolution of the PSF with energy

J. Devin

— Workshop MODE - SNR - PWN —

Description of the analysis

ALL events

Very bright SNR TS ~ 1400 for ALL events

- Analysis on 10°x10° ROI for 0.3-300 GeV
- 6.5 yrs of P8R2_SOURCE_V6 with PSF3
- Template_4years_P8_V2_scaled.fits diffuse
- Binned analysis
- Starting point : 3 FGL

Model of the ROI

— Workshop MODE - SNR - PWN —

Model of the ROI

Residual TS map

11 sources added SNR is included

J. Devin

— Workshop MODE - SNR - PWN —

SNR G326.3-1.8

* Maximum likelihood method

Probability to obtain n_i photon when the model predicts λ_i

$$P_i = \frac{\lambda_i^{n_i}}{n_i!} e^{-\lambda_i}$$

Total probability to obtain the data :

$$L = \exp(-N_{pred}) \prod_{i} \frac{\lambda_i^{n_i}}{n_i!}$$

 $LL = \log(L)$

* Test Statistic

$$TS = 2(LL_1 - LL_0) > 25$$

The model with the source reproduces better the γ -ray emission

Morphological analysis

* Can we disentangle the PWN from the SNR component ?

Residual TS map (without source)

[500 MeV - 300 GeV] with the cut PSF3

Extension

Point-like analysis (front events)

Uniform disk

Symmetric gaussian

spatial model	RA	dec	size σ or r	r _{68%}	$TS_{\rm ext}^{\rm pointlike}$	$N_{\rm DOF}$
point source	238.157	-56.186	_	-	_	2
uniform disk	238.220	-56.151	0.260°	0.2132°	238.59	2
Gaussian	238.214	-56.158	0.147°	0.22197°	247.7	2

— Workshop MODE - SNR - PWN —

Point-like analysis (front events)

Gaussian template :

0.3 - 1 GeV / PSF3

26

23

20

- 17

- 15

12

8.7

- 5.8

2.9

Point source added to the model :

Residual TS map

Count map

One component model - PSF3 events

Template	ΔTS	63
Point Source	692.95	
Uniform disk	837.66	
Gaussian	835.96	
Radio template	833.32	

— Workshop MODE - SNR - PWN —

TS maps - PSF3 events

0.3 - 1 GeV

3 - 10 GeV

10 - 300 GeV

J. Devin

— Workshop MODE - SNR - PWN —

Two components model - PSF3 events

Template	ΔTS	
PWN	742.64	
PWN + SNR (ring)	851.26	
PWN + Disk	851.67	

Residual TS map

Residual TS map with the radio template of the PWN :

 $\Delta TS = 742.64$

Residual TS map

Residual TS map with the radio template of the PWN and the ring modeling the SNR :

 $\Delta TS = 851.26$

SNR G326.3-1.8

J. Devin

— Workshop MODE - SNR - PWN —

25.0

22.5

20.0

17.5

15.0

12.5 🖄

10.0

7.5

5.0

2.5

25.0

22.5

20.0

17.5

15.0

12.5 🖞

10.0

7.5

5.0

2.5

0.0

Spectral energy distribution

SEDs (Disk) :

Index = 2.08 +/- 0.04

Spectral energy distribution

SEDs (PWN + SNR) :

Index = 2.24 +/- 0.07

Index = 1.86 +/- 0.09

J. Devin

— Workshop MODE - SNR - PWN —

Two complementary methods to investigate the different spatial constituents in the SNR G326.3-1.8

- spectral fitting using morphological templates
- fitting of the spatial morphology in a one-component model

The PSF3 selection can separate the contribution of 2 nested objects -> the emission potentially refers to different origin of processes : leptonic (for the nebula) and hadronic (for the remnant)

THANK YOU FOR YOUR ATTENTION

ALL / PSF2+3 / PSF3

SNR :

J. Devin

1

ALL / PSF2+3 / PSF3

PWN:

J. Devin

1

Two components model

Contribution SNR	D(TS)
PWN + SNR (ring)	818.38
PWN + SNR (ring)	851.26
PWN + Disk	851.67

Contribution PWN	D(TS)
SNR (ring) + Point Source	841.12
SNR (ring) + Gaussian	852.56

Two components model

Model	ΔTS	
PWN	737.17	22
PWN + SNR (ring)	851.26	
PWN + Disk	851.67	
SNR (ring) + Point Source	841.12	2
SNR (ring)	759.36	
SNR (template radio)	746.84	
SNR (ring) + Gaussian	852.56	

ACCELERATION DE PROTONS OU D'ELECTRONS ?

SED Disk

Count map (smoothed) 0.3 - 1GeV

TS map with 1 point source added - 0.3 - 1GeV

PWN extension

J. Devin

6

Above 20 GeV - TS map

41 - 36 - 32 - 27 - 23 - 18 - 14 - 9 - 4.5

SNR G326.3-1.8

Residual TS map PWN + Point Source

SED PWN + Point Source

SED PWN + Point Source

One component or two components ?

0.5 - 10 GeV :

TS (PWN) = 38.98 (80.83) TS (SNR) = 103.11 (277.65)

LL = 51839.0652648

10 - 300 GeV:

TS (Disk) = 688.28 (689.31)

LL = 51839.36

10 - 300 GeV :

TS (PWN) = 58.21 (73.69) TS (SNR) = 12.18 (13.14)

LL = -8316.10752377

TS (Disk) = 109.07 (109.62)

LL -8325.52

TS map

10-300 GeV:

J. Devin

6

TS map

PWN/Gaussian/PS
TS map Gaussian (only)
TS map PS (only)
Ts map Gaussian+ SNR2.5
SED G+SNR2.5
TS map PWN + PS (+ SED)