

pace Telescope





"Observations of the SNR RCW 86 and RX J1713.7-3946 with *Fermi*-LAT"

> <u>Benjamin Condon</u><sup>1</sup> Marianne Lemoine-Goumard<sup>1</sup> Fabio Acero<sup>2</sup> Jean Ballet<sup>2</sup>

MODE SNR-PWN Workshop

Observatoire de Meudon, May 19th 2016

<sup>1</sup> CENBG, CNRS/Université de Bordeaux <sup>2</sup> CEA Saclay, Irfu



## Introduction



- Young shell-type remnants are a type of SNR of particular interest
- Thought to be efficient CR accelerators (fast/energetic shock wave)
- They share some characteristics :
  - age ~ 1000-2000 years
  - in the Sedov phase (or about to reach it)
  - the morphology, of course (a shell structure)

#### Examples of shell-type remnants detected by H.E.S.S. at TeV energies



RX J1713.7-3946



HESS J1731-347





## Introduction



- Young shell-type remnants are a type of SNR of particular interest
- Thought to
- They share
  - age ~ 10
  - in the Se
- We have studied those two with *Fermi*-LAT

ergetic shock wave)

- the morphology, of course (a shell structure)

Examples of shell-type remnants detected by H.E.S.S. at TeV energies







### About the *Fermi*-LAT



#### The Large Area Telescope is an $e^{-}/e^{+}$ pair conversion space detector.

#### **Structure of the LAT**

- Converter/tracker
- Calorimeter
- Anti-coincidence system

#### Performances

- Energy range : 20 MeV 500 GeV
- Large field of view (~ 2.4 sr)
- PSF ~ 0.08° (68% contain.) at 10 GeV with the best event class



γ<sub>I</sub> incoming gamma ray





# About RCW 86



### **ID** Card

- Remnant of a Type Ia SN
- Associated to the historical SN 185
- Age ~ 1850 years
- Distance ~ 2.5 kpc





### Why this remnant ?

- young remnant

(efficient CR accelerator ?)

- detection of non-thermal X-rays
- lots of multiwavelength observations





- Now detected as an extended source with the LAT (radius =  $0.37^{\circ} \pm 0.2^{\circ}$ )
- No good correlation between LAT data and multiwavelength templates



TS map above 1 GeV (contours of the best uniform disk template)



→ HESS template for the spectral analysis 6





#### Energy range : 100 MeV - 500 GeV

- Spectral model : Power Law ( $\Gamma = 1.42 \pm 0.1_{stat} \pm 0.06_{syst}$ )
- Power Law  $\rightarrow$  Broken Power Law : ~ 2  $\sigma$  (not significant enough)







- SED modeling : one unique population of emitting leptons
- Inverse Compton on CMB only







- SED modeling : two populations
  - one population of radio emitting particles
  - one population of X-ray/gamma-ray emitting particles
- Inverse Compton on CMB only



All those results (and more !) are available in : Ajello et al. 2016, ApJ, 819, 98





- A promising SNR :
  - young remnant
  - non-thermal emission detected in X-rays
  - detected at TeV energies
- The GeV analysis is interesting :
  - the morphology seen by Fermi-LAT does not corrolate very well with the radio, X-ray and TeV morphologies - the SED and the modeling points toward a pure leptonic  $\gamma$ -ray emission (no protons...?)
- But :

- A Power Law seems a bit too simple to describe the spectrum, when looking at the  ${\ensuremath{\mathsf{SED}}}$ 

- It's a faint remnant, low statistics at GeV energies