AN EMPIRICAL EQUATION OF STATE AND ITS APPLICATIONS IN NUCLEAR PHYSICS AND ASTROPHYSICS

DEBARATI CHATTERJEE LPC/ENSICAEN,

CAEN, NORMANDY, FRANCE

COLLABORATORS:

FRANCESCA GULMINELLI JEROME MARGUERON

0 0

6

0

0

NS: Theory vs Observations

- Mass M
- Radius R
- Moment of inertia I~MR²
- Gravitational redshift z~M/R
- Period, Period derivative

MODELING NS EOS: INTERNAL STRUCTURE

MODELING NS CRUST & CORE

- nuclei in lattice + e gas
- each lattice volume represented by a Wigner-Seitz cell
- Each cell assumed to be charge neutral, Coulomb interaction between cells neglected
- electrons uniformly distributed
- system in chemical equilibrium
- Composition largely sensitive to experimental determination of nuclear masses [Audi tables]

Inner crust

Core

- as density increases, nuclei become n rich
- Beyond density $4x10^{11}$ g/cm³ (n drip density), n drip out of nuclei
- nuclear clusters + e gas + n gas
- At T=0, ground state energy: E minimization
- Composition dominated by clusters beyond current experimental data

• Homogeneous liquid composed of n,p,e (exotic matter) in chemical equilibrium

Outer crust

WHY WE NEED A UNIFIED EOS

Fortin et al., ArXiv: 2016

Crust-Core Matching for non-unified EoSs

- Matching is done so that pressure is an increasing function of energy density
- different models leads to arbitrary results
- uncertainty in crust thickness upto 30% and for radius 4%

thermonuclear explosion Photo Credit: David A. Hardy & PPARC

MOTIVATION

- study of the properties of NS crust-core transition is crucial for understanding astrophysical phenomena such as:
 - Cooling of neutron stars
 - Pulsar glitches
 X-ray Bursts and
 Superbursts in accreting
 neutron stars
 - Moment of inertia
 - R-modes
- outer layers of neutron stars with subnuclear density n < 0.16 fm⁻³ => empirical constraints from terrestrial nuclear physics

Color Super-

conductor?

Net Baryon Density

NS core

NS crust

Nuclei

0

=> empirical constraints from terrestrial nuclear physics

EMPIRICAL EOS COEFFICIENTS

- Around saturation: If $(E_0, \rho_0, K_0, J_0, L, K_{sym})$ are known, the EoS is known
- Above saturation: it is the same, but you need more coefficients

EXPERIMENTAL CONSTRAINTS

Constraints in J-L plane

- From n skin thickness of ²⁰⁸ Pb
- From HIC
- From electric dipole polarizability α_D
- From giant dipole resonance (GDR) of ²⁰⁸ Pb
- From measured nuclear masses
- From isobaric analog states (IAS)

Fortin et al., ArXiv: 2016

WHY WE NEED A MODEL INDEPENDENT EOS

A Unified Model

In density functional theory, the energy density functional

$$\mathcal{H} = \mathcal{H}\left[\rho_q(\vec{r}), \nabla_{q'}^k \rho_q(\vec{r})\right]$$

is a function of the densities ρ_q and their gradients.

- In general, there are an infinite number of gradients
- If k = 0 ⇒ Thomas-Fermi approximation (density terms only): applicable only to homogeneous infinite nuclear matter
- For finite nuclei (Inhomogeneous matter), non-zero k (say 2)

 Extended-Thomas-Fermi approximation of order k
- Separated into isoscalar and isovector parts

$$\mathcal{H}_{ETF} = \frac{\mathcal{H}_{IS}}{\mathcal{H}_{IV}} + \mathcal{H}_{IV}\delta^2$$

where the isospin asymmetry $\delta = (\rho_n - \rho_p)/\rho$

A Unified Model

 Each of these contributions consists of kinetic and potential terms

$$\mathcal{H}_{IS,IV} = \mathcal{K} + \mathcal{V}$$

where the potential part can be further separated into contributions from the density-dependent term, the finite range term and the spin-orbit term respectively

 $\mathcal{V} = \mathcal{H}_{\rho} + \mathcal{H}_{fin} + \mathcal{H}_{so}$

- \mathcal{K} and \mathcal{H}_{ρ} can be determined using empirical constraints
- H_{fin} and H_{so} require additional experimental inputs C_{fin} and C_{so}

A Unified Model

 Each of these contributions consists of kinetic and potential terms

 $\mathcal{H}_{IS,IV} = \mathcal{K} + \mathcal{V}$ where the potential part can be further separated into contributions from the density dependent term, the finite range term and the spin-orbit term respectively $\mathcal{V} = \mathcal{H}_{\rho} + \mathcal{H}_{fin} + \mathcal{H}_{so}$

- \mathcal{K} and \mathcal{H}_{ρ} can be determined using empirical constraints
- H_{fin} and H_{so} require additional experimental inputs C_{fin} and C_{so}

Homogeneous Nuclear Matter (HNM)

- For infinite homogeneous matter, the finite size effects and spin-orbit terms can be neglected
- Energy per particle e = H/ρ for HNM : expansion around saturation density ρ₀ in terms of x = P-ρ₀/3ρ₀

$$e(x, \delta) = e_{kin}(x, \delta) + e_{pot}(x, \delta)$$

• The kinetic part in terms of Fermi gas kinetic energy t_0^{FG}

$$e_{kin}(x,\delta) = \frac{1}{2} t_0^{FG} (1+3x)^{2/3} \left[(1+\delta)^{5/3} \frac{m}{m_n^*} + (1-\delta)^{5/3} \frac{m}{m_p^*} \right]$$

while the potential part can be written as an expansion

$$e_{pot}(x,\delta) = \sum_{\alpha=0}^{2} (a_{\alpha 0} + a_{\alpha 2} \delta^{2}) \frac{x^{\alpha}}{\alpha!}$$

オロトオ母トオミトオミト ヨーのへで

Homogeneous Nuclear Matter (HNM)

- For infinite homogeneous matter, the finite size effects and spin-orbit terms can be neglected
- Energy per particle e = H/ρ for HNM : expansion around saturation density ρ₀ in terms of x = P-ρ₀/3ρ₀

$$e(x,\delta) = e_{kin}(x,\delta) + e_{pot}(x,\delta)$$

• The kinetic part in terms of Fermi gas kinetic energy t_0^{FG}

$$e_{kin}(x,\delta) = \frac{1}{2} t_0^{FG} (1+3x)^{2/3} \left[(1+\delta)^{5/3} \frac{m}{m_n^*} + (1-\delta)^{5/3} \frac{m}{m_p^*} \right]$$

while the potential part can be written as an expansion

$$e_{pot}(x,\delta) = \sum_{\alpha=0}^{2} (a_{\alpha 0} + a_{\alpha 2} \delta^{2}) \frac{x^{\alpha}}{\alpha!}$$

オロトオ母トオミトオミト ヨーのへで

An Empirical EoS

The kinetic and potential terms can be regrouped in terms of isospin asymmetry

$$\frac{E}{A} = e = \frac{e_{IS}}{e_{IS}} + e_{IV}\delta^2 + \mathcal{O}(\delta^4)$$
(1)

The density dependence of SNM can be expanded around ρ₀, in terms of x = \frac{\rho - \rho_0}{3\rho_0}

$$e_{IS} = E_0 + \frac{K_0}{2}x^2 + \mathcal{O}(x^3)$$
 (2)

where
$$K_0 = \frac{\partial^2 e}{\partial x^2}\Big|_{x=0,\delta=0}$$

オロトオ母トオミトオミト ヨーのへで

An Empirical EoS

 Similarly, symmetry energy around saturation can be written as

$$e_{IV} = J_{sym} + L_{sym}x + \frac{K_{sym}}{2}x^2 + \mathcal{O}(x^3)$$
(3)

where

- symmetry energy : $J_{sym} = e_{IV}(x = 0) = \frac{1}{2} \frac{\partial^2 e}{\partial \delta^2} \Big|_{\delta = 0}$ slope of the symmetry energy : $L_{sym} = \frac{\partial J_{sym}}{\partial x} \Big|_{x=0}$ curvature of symmetry energy : $K_{sym} = \frac{\partial^2 J_{sym}}{\partial x^2} \Big|_{x=0}$
- In terms of empirical parameters, the energy per particle of ANM is

$$e = E_0 + J_{sym}\delta^2 + L_{sym}\delta^2 x + \frac{1}{2}(K_0 + K_{sym}\delta^2)x^2$$
(4)

<ロト < 母 > < 臣 > < 臣 > 三 の < @</p>

Homogeneous Nuclear Matter (HNM)

One can determine the coefficients of this expansion in terms of empirical parameters (p₀, E₀, K₀, J_{sym}, L_{sym}, K_{sym})

$$t_0^{FG} = \frac{3}{10m} \left(\frac{3\pi^2 \rho_0}{2}\right)^{2/3}$$

$$a_{00} = E_0 - t_0^{FG} (1 + \bar{m})$$

$$a_{10} = -t_0^{FG} (2 + 5\bar{m})$$

$$a_{20} = K_0 - 2t_0^{FG} (5\bar{m} - 1)$$

$$a_{02} = J_{sym} - \frac{5}{9} t_0^{FG} \left[1 + (\bar{m} + 3\bar{\Delta})\right]$$

$$a_{12} = L_{sym} - \frac{5}{9} t_0^{FG} \left[2 + 5(\bar{m} + 3\bar{\Delta})\right]$$

$$a_{22} = K_{sym} - \frac{10}{9} t_0^{FG} \left[-1 + 5(\bar{m} + 3\bar{\Delta})\right]$$

▶ m̄ and Δ̄ are related to in-medium effective mass and isospin splitting of nucleon masses

(ロ) (四) (三) (三) (三) (○) (○)

PRESENT UNCERTAINTY IN EMPIRICAL PARAMETERS

Margueron, Casalí, Gulminellí (in preparation)

fixed Explore inside small interval										Consider large interval		
Model		ρ	E_0	K ₀	Q_0	Z_0		E_{sym}	L_{sym}	K _{sym}	Q_{sym}	Z_{sym}
		fm-	³ MeV	MeV	MeV	MeV		MeV	${\rm MeV}$	${\rm MeV}$	MeV	MeV
Skyrme	Averag	e 0.158	86 -15.91	251.68	-300.20	1178.35		31.22	53.52	-130.15	316.68	-1890.99
	σ	0.004	40 0.21	45.42	157.81	848.47		2.03	31.06	132.03	218.23	1191.23
RMF	Averag	e 0.149	94 -16.24	267.99	-1.94	5058.30		35.11	90.20	-4.58	271.07	-3671.83
	σ	0.00	25 0.06	33.52	392.51	2294.07		2.63	29.56	87.66	357.13	158 2 .34
RHF	Averag	e 0.154	40 -15.97	248.06	389.17	5269.07		33.97	90.03	128.16	523.29	-9955.49
	σ	0.00	35 0.08	11.63	350.44	838.41		1.37	11.06	51.11	236.80	4155.74
Average		0.154	40 -16.04	255.91	29.01	3835.24		33.43	77.92	-2.19	370.34	-5172.77
σ		0.00	51 0.20	34.39	424.59	2401.14		2.64	30.84	142.71	298.54	4362.35

$$\frac{E}{A} = (E_0 + E_{sym}\delta^2) + L_{sym}x\delta^2 + \frac{1}{2}(K_0 + K_{sym}\delta^2)x^2 + \dots$$

Effect of uncertainty in saturation density on binding energy, symmetry energy and pressure

Effect of uncertainty in λ_{sat} on binding energy, symmetry energy and pressure

Effect of uncertainty in $K_{\rm sat}$ on binding energy, symmetry energy and pressure

Effect of uncertainty in J_{sym} on binding energy, symmetry energy and pressure

Effect of uncertainty in L_{sym} on binding energy, symmetry energy and pressure

Effect of uncertainty in K_{sym} on binding energy, symmetry energy and pressure

Effect of uncertainty in effective mass on binding energy, symmetry energy and pressure

Given a parametrized density profile ρ_q(r), the energy of a nucleus

$$E = \int dr \mathcal{H}_{ETF} \left(\rho_q(r) \right)$$

Fermi function is a reasonable choice for the density profile

$$\rho_q(r) = \rho_0(\delta)F(r), F(r) = (1 + e^{(r-R)/a})^{-1}$$
(5)

where a is the diffuseness of the density profile

saturation density of asymmetric matter

$$\rho_0(\delta) = \rho_0(\delta = 0) \left(1 - \frac{3L_{sym}}{K_{sat} + K_{sym}\delta^2} \right)$$
(6)

Separating into the bulk and surface contributions,

$$E = E_b + E_s$$

• The bulk part $E_b = \lambda_{sat} A$, where the energy per particle

$$\lambda_{sat} = \frac{\mathcal{H}}{\rho}\Big|_{\rho_0(\delta)}$$
$$= e_{HNM}(x, \delta)$$

where $x = \frac{\rho - \rho_0(\delta)}{3\rho_0(\delta)}$

François Aymard, Ph.D.Thesis

Separating into the bulk and surface contributions,

$$E = E_b + E_s$$
The bulk part $E_b = \lambda_{sat}A$, where the energy per particle
$$\lambda_{sat} = \left.\frac{\mathcal{H}}{\rho}\right|_{\rho_0(\delta)}$$

$$= e_{HNM}(x, \delta)$$

where $x = \frac{\rho - \rho_0(\delta)}{3\rho_0(\delta)}$

François Aymard, Ph.D.Thesis

・ロト・日本・モート モー もくの

The surface energy can be separated into local and non-local terms

$$E_s = E_s^L + E_s^{NL}$$

 $E_L = E_L$ [Empirical parameters], $E_{NL} = E_{NL}$ [Empirical parameters + C_{fin} + C_{so}]

- In the limit of purely local energy functional, the optimal configuration is a homogeneous hard sphere a = 0.
- The presence of NL terms in the functional results in finite diffuseness for atomic nuclei
- The diffuseness can be determined by $\frac{\partial E}{\partial a} = 0$

François Aymard, Ph.D.Thesis

A = 100

 $\begin{array}{l} \mbox{Effect of uncertainty in $\rho_{sat}, \lambda_{sat}, K_{sat}, m^*/m$ on empirical value of C_{fin} using experimentally determined values of a_s \end{array} } \end{array}$

A = 100

 $\begin{array}{l} \mbox{Effect of uncertainty in $\rho_{sat}, \lambda_{sat}, K_{sat}, m^*/m$ on empirical value of C_{fin} using experimentally determined values of a_s \end{array} } \end{array}$

Effect of uncertainty in $C_{\mbox{fin}}$ on the diffuseness parameter a

Effect of uncertainty in $C_{\mbox{fin}}$ on the surface energy and its components

• Our aim is to develop a model independent (based on empirical constraints) "unified" EOS to describe core (homogeneous nuclear matter) + crust (asymmetric nuclei)

• To extend the calculations to describe asymmetric nuclei in outer crust and then to inner crust

• To model the composition of the crust and core of a neutron star in beta equilibrium

• To study the influence of the empirical parameters on the properties related to the crust-core transition :

- mass
- radius
- moment of inertia
- glitches

using the model-independent unified EoS

THANK YOU!

MERCI!

HIGHER ORDER TERMS

Influence of density dependence of symmetry energy on properties of crust-core transition analysed for 2 families of RMF models, differing in the isovector channel (same isoscalar properties)