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Brueckner-Bethe-Goldstone (BBG) calculations

EoS derived by Baldo and al. (1997) popular

Advantages

EoS in SNM, ANM, quantities associated,...
Reach high densities
Realistic nucleon-nucleon interactions

Drawbacks
I Resource-consuming calculations
I One calculation every (n,T,Y)
I Few finite-nuclei calculations
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An alternative: effective interactions
Effective interactions

Skyrme interaction Gogny interaction
Taylor expansion in SNM

zero-range finite-range

Standard

Up to k2

Up to k6

Extended
VExt = Vk0 + Vk2︸ ︷︷ ︸

Standard

+Vk4 + Vk6

Advantages

EoS and
quantities

Analytically
obtained

Finite-nuclei

Drawbacks

I Poor predictive
power
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Our proposition: Extended Skyrme interaction
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8 new parameters
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A fit: LYVA1
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Fit of EoS in SNM and PNM
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SNM and PNM LYVA1 vs BCPM vs BSk
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Nuclear channels EoS in SNM
Decomposition of SNM EoS on spin-isospin channels
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Nuclear channels EoS for LYVA1 and BSk
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Pressure
Constraints from heavy-ion collisions and experiments on kaons
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Symmetry energy
LYVA1 vs BSk vs BCPM vs LNS
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εT (n0) = J = 33.8MeV
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Effective mass
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URCA process
Allowing fast cooling
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Causality Principle
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Neutron Star Masses

Solving the TOV equations,
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LYVA1 is compatible with 2 M� NS.
Here, we have M=1.96 M�.
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Main results of LYVA1
Grasp quantities of interest in BBG calc.Easy and
analytical.
EoS for both SNM and PNM
Causality principle and URCA process
Available code for stellar calculations

Perspectives
I Properties about polarized matter
I Easy finite-temperature expansion
I Describe both ground state and excited states
I Available code for (neutron-rich) finite-nuclei
I New BBG calcultations on the way
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ABSTRACT

We present a new equation of state for infinite systems (symmetric, asymmetric and neutron matter) based on anextended Skyrme
functional constrained by microscopic Brueckner-Bethe-Goldstone results. The resulting equation of state reproduces with very good
accuracy the main features of microscopic calculations andit is compatible with recent measurements of two times Solar-mass neutron
stars. We provide all necessary analytical expressions to facilitate a quick numerical implementation of quantities of astrophysical
interest.

Key words. Effective interaction, Equation of state

1. Introduction

A key ingredient for many astrophysical calculations is a reliable Equation of State (EoS) for isospin asymmetric matter, covering
from symmetric nuclear matter (SNM) to pure neutron matter (NM), from low to high densities (≃ 4− 5 times saturation density).
In this respect, a popular application is by instance the description of neutron stars (NS) properties as the mass-radius relation or
their inhomogeneous crust. Restricting ourselves to the category of nucleonic EoS, one of the most popular EoS is the onederived
by Baldo et al. (1997). It has been obtained within the context of Brueckner-Bethe-Goldstone (BBG) many-body theory using the
Argonne v14 potential plus the Urbana model for the three-body nuclear interaction. Such an EoS has been tabulated for given
values of the density of the system. For such a reason, it is customary to fit the EoS with some analytical expressions whichare
much simple to handle in numerical codes (Typel et al. (2013)) suited for astrophysical simulations.

A possible alternative to the fit is the use of an effective Skyrme interaction (Skyrme (1959)) as early suggested by Cao et al.
(2006). These authors have shown that it is possible to fit an effective Skyrme functional (that they named LNS) on BBG, conserving
some of the main features of the original BBG EoS. The main advantage of using a functional instead of a generic interpolation,
as done for instance by Haensel & Potekhin (2004), is that once the parameters of the functional are fixed, all basic properties as
pression or symmetry energy can be simply obtained by standard derivative operations. In the case where the vector part of the
functional is also taken into account, as for the case of a functional derived from a complete Skyrme interaction, with a simple
formalism based on the Linear Response theory Pastore et al.(2015), one can also describe collective phenomena within the NS.
The latter play a crucial role in describing different phenomena in the NS as the thermal properties of the inner crust (Chamel et al.
(2013)) or the neutrino mean free path Iwamoto & Pethick (1982). Another important advantage is that the same functionalcan also
be consistently used to describe the region of the crust of the NS (Chamel & Haensel (2008)), thus allowing for a unified description
of the star. Although LNS gives a nice reproduction on infinite matter properties up to two times saturation density, its EoS in pure
neutron matter (PNM) remarkably deviates from the BBG results, leading to a different behavior of the symmetry energy at high
density. It follows that the LNS EoS supports only NS with mass lower than 1.6 Solar-masses as shown by Singh et al. (2013).The
authors of (Gambacurta et al. (2011)) have recently refittedthe LNS functional, but hte new LNS1 and LNS5 do not substantially
improve the properties of the homogeneous nuclear medium ascompared to the original LNS, although they improve the description
of finite nuclei. In the present article, we generalize the analysis done by Cao et al. (2006) concerning the possibility of constraining
a phenomenological Skyrme functional on microscopic results, by using anextended Skyrme functional which includes up to 6th
order derivative terms (Carlsson et al. (2008); Raimondi etal. (2011)), aiming at giving a reliable EoS also in the high density region
and thus in better agreement with BBG results.

Indeed, the Skyrme interaction can be interpreted as a low-momentum expansion of a finite-range interaction (Skyrme (1959)).
Thestandard form of the interaction is the one given by Vautherin & Brink (1972) and it takes into account only gradients terms
up to the second power, as for LNS. Although this can be viewedas a good approximation to be used in finite nuclei calculations
(Bender et al. (2003)), it is not adapted to the study of densenuclear matter. For example, thestandard Skyrme interaction is not
able to reproduce at the same time the correct isovector splitting of the effective mass of BBG results (Baldo et al. (2014b)) and
the high density behavior of nuclear matter. Among the different strategies one can adopt to overcome these difficulties, the most

Article number, page 1 of 14
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From Gogny to Skyrme in SNM (Submitted)
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Figure 5: (Colors online) EoS in SNM for the D1S interaction (dots) and sum of different partial waves (left). Comparison
between the EoS obtained using full HF calculations Eq. 17 (symbols) and the Eq. 20 truncated (dashed-lines) at L = 3
(right). See text for details.

Since it has a zero-range nature, it acts only in the L = 1 channel and the splitting of higher order
waves as D, F is zero (see Fig. 7). A different behavior is observed when an explicit tensor term
is added as in the D1ST2a case. In this case the the splitting between partial waves is present
also for the D and F waves although the sign is not correct for the P and F waves: as already
outlined in Ref. [45], there is a possible inconsistency between the tensor parameters fitted us-
ing finite-nuclei constraints [31] and those deduced from infinite nuclear matter properties.This
inconsistency was also emphasized in a previous analysis Refs [46, 47] based on Landau pa-
rameters, where a discrepancy between the sign of Hl parameters and ab − initio results was
spotted.

By inspecting the equations we notice that apart from the different spatial form factors be-
tween Gogny and M3Y, the major difference is the presence of a finite-range spin-orbit term
which thus contributes to all spin-triplet partial waves starting from L = 1.

In Fig. 8, we compare the partial wave decomposition of the M3Y-Pn with n = 2, 3, . . . , 7
interactions with the BHF results given in Ref. [13] for some specific partial waves. We observe
that the reproduction of the different channels JLS T is quite poor in the sense that some partial
waves have the wrong sign. However the results are far better than the Gogny interactions and
it is worth remarking that the 1S 0 channel, related to the pairing properties of the interaction, is

11
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Parametrisation of LYVA1

D. Davesne et al.: Extended Skyrme Equation of State in asymmetric nuclear matter

Table 1. Parameters of the extended LYVA1 Skyrme interaction, with α = 1/6, t
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Fig. 1. (Colors online) Equations of state of SNM and PNM (panel a) and projections (S ,T ) in SNM (panel b), both expressed in MeV. The solid
lines represent the result obtained with our extended Skyrme interaction, while the dots represents the EoS obtained by Baldo et al. (1997). The
LNS results are represented by dashed-lines.

(dashed lines), and one can see a rapid deviation of the PNM EoS, starting from n ≈ 0.4 fm−3; one can expect this deviation also
manifests for other quantities as the symmetry energy at high values of the density. Let us now turn to the results for the (S , T )-
channels shown in panel b. As already discussed in (Lesinski et al. (2006)), a general drawback of the standard Skyrme functional
is that the simultaneous reproduction of the (S , T )-channels is very difficult, to say the least. In the figure one can see the particular
LNS case, which fails to reproduce BBG results. In contrast, with the extended functional the S = 1 channels are nicely fitted in
the full range of density values, whereas the S = 0 channels show a deviation for n ≥ 0.6 fm−3 as a consequence of our giving
more weigh to PNM data in the fit. All the other quantities presented hereafter in the article have not been fitted, and they can be
considered as a prediction of our model.

It is worth mentioning that there are some other functionals which have been developed with particular attention to the properties
of NS. Among the non-relativistic ones, we consider the BCPM (Baldo et al. (2013, 2014a); Sharma et al. (2015)) and the BSk
family (Goriely et al. (2009, 2013)). The BCPM functional has been derived in a complete Khon-Sham scheme, thus not related
to any interaction, and it has been explicitly constrained to reproduce BBG results in homogeneous matter. The BSk models have
been derived from an effective Skyrme interaction with the addition of a power of the density into the momentum dependent terms
of the standard Skyrme interaction. The BSk model have been constrained on several nuclear observables as masses and radii of
finite nuclei together with additional pseudo-observables of homogeneous nuclear matter. In Fig.2, we compare the EoS in both
SNM and PNM obtained with LYVA1, the BCPM functional and three representative BSk interactions, namely BSk19, BSk20 and
BSk21 (Chamel et al. (2011)). Since the BCPM functional fits the same microscopic EoS as LYVA1, we observe that the results are
almost on top of each other, except in the saturation region where the BCPM has been adjusted to give a value of saturation density
n0 = 0.16fm−3 and E/A = −16 MeV. We remind that the BCMP has been fitted up to n = 0.6 fm−3 and that beyond that value
the microscopic results of Burgio & Schulze (2010) have been used. In order to be consistent, we will thus omit the points beyond
0.6 fm−3 in this paper.

Concerning the BSk functionals, we used the generalized expressions given in (Lesinski et al. (2007)) to obtain their S T decom-
position. It is important to notice that as for the SLy4 case ( Chabanat et al. (1997)), the coupling constants in front of the so-called
J

2 term are switched to zero. This choice is justified in ( Chamel & Goriely (2010)) to avoid the appearance of spurious ferromag-
netic phase-transitions in the homogeneous medium (Margueron et al. (2002)) and anomalous behavior of the entropy. In Fig.3,
we compare the results obtained with the BSk models and the BBG calculations. We observe that the BSk behave better than any
standard Skyrme interactions (Lesinski et al. (2007)) since in the low-density region (≈ n0) the BSk give the correct sign and trend
of the energy per particle. On the same figure we also report the chiral effective field theory (χ-EFT) calculations at low momentum
k (Hebeler et al. (2011)). The (χ-EFT) results are in very good agreement with the BBG results apart from the (S=1,T=1) channel.
Such a comparison gives us the level of uncertainty related to the adopted interaction and/or calculation technique.
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Fig. 4. (Colors online) Equations of states in asymmetric nuclear matter as a function of the density n and asymmetry parameter Y .

In Fig. 4, we show the binding energy per particle obtained with our new functional as a function of the density and the
asymmetry parameter Y of the system. As expected, the energy minimum is located at Y = 0 with the values E/A =-17.02 [MeV]
and n0 = 0.169 [fm−3]. These values are slightly larger than commonly adopted ones (Dutra et al. (2012)). This is a drawback of
the BBG calculations used to fix the parameters which have E/A =-16.46 [MeV] and n0 = 0.178 [fm−3] (Baldo et al. (1997)). We
decided not to adjust the saturation point to the standard value as extracted, for example, from mass formulas (Bohr & Mottelson
(1998)) and keep the value obtained by the direct fit as done for LNS (Cao et al. (2006)). Due to uncertainties related to three-body
forces (Baldo (1999)) and the methods adopted for the calculations (Baldo et al. (2012)), these values can change from one ab initio
method to another. The goal of the present article is to prove that a simple Skyrme functional can grasp the main features of a more
complicated calculation based on realistic nucleon-nucleon interaction, as a consequence we prefer not to do any fine tuning around
the saturation point since it will not change the main conclusions of the present work.

From Eq. 5, we can also extract other quantities, as the pressure of the system P = n2
∂(E/A)
∂n or the nuclear incompressibility

K = 9n2
∂2(E/A)
∂n2

∣∣∣∣
n=n0
= 9 ∂P

∂n

∣∣∣
n=n0

, as functions of the asymmetry parameter Y. In Tab.2, we report several relevant SNM quantities

calculated at saturation density. Our parametrization gives a value of the incompressibility of K = 231 MeV at saturation density,
which is within the range of acceptable values as discussed by Dutra et al. (2012). The third derivative of the EoS gives us the
skewness Q.

Table 2. Basic SNM properties calculated with the LYVA1 parametrization given in Tab.1, the BCPM and the BSk19-21 functionals at saturation
density n0.

LYVA1 BCPM BSk19 BSk20 BSk21 LNS

n0[fm
−3] 0.169 0.160 0.160 0.160 0.158 0.175

E/A[MeV] -17.02 -16.00 -16.08 -16.80 -16.05 -15.31
K[MeV] 231 214 237 241 246 211
m∗/m 0.707 1 0.80 0.80 0.80 0.825
Q[MeV] -463 -881 -298 -282 -274 -384
J[MeV] 33.8 31.9 30.0 30.0 30.0 33.4
L[MeV] 64.5 53.0 31.9 37.4 46.6 61.5
Ksym[MeV] -75.6 -98.1 -191.4 -136.5 -37.2 -127.7
Qsym[MeV] 464 877 473 550 710 303
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method to another. The goal of the present article is to prove that a simple Skyrme functional can grasp the main features of a more
complicated calculation based on realistic nucleon-nucleon interaction, as a consequence we prefer not to do any fine tuning around
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which is within the range of acceptable values as discussed by Dutra et al. (2012). The third derivative of the EoS gives us the
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Polarized matter of LYVA1
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far by any microscopic calculation (Pandharipande et al. (1972); Fantoni et al. (2001); Vidana et al. (2002)). It is thus interesting to
determine the behavior of our interaction concerning this aspect.

The expressions for the energy per particle in fully polarized pure neutron matter (PolPNM) reads

E/A

∣∣∣∣∣
PolPNM

=
3

5

~2

2m
c

2
n

2/3 +
3

10
c

2(1 + x
(2)

2
)t

(2)

2
n

5/3 +
9

35
c

4(1 + x
(4)

2
)t

(4)

2
n

7/3 +
16

15
c

6(1 + x
(6)

2
)t

(6)

2
n

3 (11)

where we have used the notation c = (6π2)1/3. In the following we compare the results obtained with the LYVA1 functional and
available BBG calculations of (Bombaci et al. (2006)). More precisely, we show in Fig.9, the difference of energy per particle

between PolPNM and PNM, that is ∆E/A = E/A
∣∣∣
PolPNM

− E/A
∣∣∣
PNM

obtained with the LYVA1 functional and the BBG results
of (Bombaci et al. (2006)). In order to be consistent, we consider only, for this particular case, the results up to ≈3 n0 since the
treatment of the three-body term at high density is not the same used in BBG results of (Baldo et al. (1997)) and used here for
the fit of the LYVA1 functional. We observe that the LYVA1 as well as BSk20 follow pretty closely the BBG results, while the
BSk19(21) tends to underestimate (overestimate) the energy difference between the two systems. The LNS functional is not stable
against polarization and at densities n ≈ 0.6 [fm−3] favors the appearance of polarized neutron matter. The BCPM functional has
not been included in such analysis since the functional has not been tailored to describe polarized systems.
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Fig. 9. (Colors online) Energy difference between PolPNM and PNM for the different models considered in the text.

5. Symmetry energies

We give now the LYVA1 expression for the isospin symmetry energy εT (n), which plays a crucial role in determining the composi-
tion of the NS since the β-equilibrium condition strongly depends on it. It follows that reproducing the symmetry energy not only
at saturation, but also as a function of the density is a necessary condition to have a reliable extrapolation of the high density part
of the NS. Starting from the complete expression of Eq. 5, we can expand the binding energy per particle up to second order in the
following way

E

A
(n, Y) =

E

A
(n, 0) + εT (n)Y2 + . . . (12)

to get the result
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In Fig. 10, we show the evolution of the symmetry energy εT as a function of the density of the system. At saturation density,
we obtain a value of the symmetry energy εT (n0) = J = 33.8 MeV, a value compatible with most recent constraints on J obtained
combining different experimental data (Tsang et al. (2009)). Furthermore, we observe an excellent agreement up to several times the
saturation density value between our results and the BBG ones. In the same figure, we also compare the evolution of the symmetry
energy for the BCPM and BSk models. We observe that while BCPM gives by construction results which are essentially on top of
ours for low density, the BSk give very different behaviors especially beyond saturation density. There is not agreement between
different microscopic approaches concerning the behavior of εT beyond saturation density. We refer to the discussion in ( Goriely
et al. (2010)). A possible way to figure out the correct trend of εT at high density is the predicted proton fraction and thus the
possibility or not of allowing firect URCA process (Haensel (1995)). We refer to Sec.7 for a more detailed discussion. We can
anyhow anticipate that BSk19-20 and LNS are not compatible with such additional constraints. In panel (b), we compare the results
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Polarized matter effective mass

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
∆

0.2

0.4

0.6

0.8

1

1.2

m
*
/m

Spin up
Spin down

n=0.16 fm
-3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

∆

0.2

0.4

0.6

0.8

1

1.2

m
*
/m

LYVA1 

BSk19

BSk20

BSk21

LNS

n=0.16 fm
-3

4/9 Extended Skyrme Equation of State in ANM



(S,T) channels Equation of state in SNM:

E/A (S = 0, T = 0) =
3
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f +
9

560
(1− x(4)
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]

This calculations has also been done for neutron matter,
asymmetric matter and polarized matter.
See D.Davesne, J.Navarro and al., Phys. Rev. C 91 064303 (2015)
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Justification of D and F waves
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FIG. 3: (Color on line) Same as Figure 1. Top left : S partial waves. Bottom left: P partial waves. Top right: D partial waves.
Bottom right: F partial waves.
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Justification of D and F waves
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FIG. 4: (Color on line) Same as Figure 1. for ℓ > 2 partial waves. Top: single partial waves. Bottom: Coupled systems.
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More comments about our interaction

The effective mass with the D-wave has a dependency in
momentum ( ∝ ρ

1
3 in INM):( m

m∗
)

= 1 +
2m
~2 ρ0

[
Cτ

0 + 1
2C(4)Mρ

0 k2
F

]
. (1)

We could obtain peaked effective mass, meaning good
spectroscopic properties.
Interaction parameters linked to Laudau parameters
Stability of the Extended Skyrme functional in INM can be
checked with LR.
See Becker, P. and al., (2014), J. Phys. G: Nucl. Part.
Phys, 42, 034001

8/9 Extended Skyrme Equation of State in ANM



Where is the D-wave?

A term such as (k′ · k)2 in the differential equation cause a
cos2 ωkk ′ to appear. We use:

P`(cosω12) =
4π

2`+ 1

∑
m

Y ∗`m(Ω1)Y`m(Ω2) (2)

Contribution in `=2:

cos2 (ωkk ′) =
2
3

P2(cos ωkk ′) +
1
3

=
8π
15

∑
m

Y ∗2m(Ω1)Y2m(Ω2) +
1
3

(3)
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