F. Acero¹, S. Katsuda², J. Ballet¹, R. Petre³ ¹AIM/CEA-Saclay ²Chuo Univ. Tokyo ³NASA/GSFC

Thermal X-rays & proper motion in RX J1713.7-3946

A CR accelerator prototype

North

What we know:

- CC supernova
- Synch dominated X-rays
- interacting with clouds in the NW
- from interaction d \sim 1 kpc
- Brightest SNR in TeV

Don't know:

Why can we detect thermal X-rays today

- Optimize where to look: lowest absorption in the center region
- 70 ks dedicated Suzaku observation
- +230 ks XMM exposure for CCO pulsation search
- Bkg spectrum is very important: using 2x40 ks OFF Suzaku pointings
- Softness map indicates low N_H and/or thermal contribution

Pure power-law model

Power-law model + thermal

Power-law model + thermal

- Given abundances, thermal emission is likely ejecta related
- Lack of Fe => compatible with CC supernova
- Mg/Ne, Si/Ne, and Fe/Ne ratios indicate M_{progenitor} < 20 M_o

6

How to constrain ambient medium: Filament proper motion

Filament structures in RXJ ... ? Not as easy as in:

How to constrain ambient medium: Filament proper motion

Filament structures in RXJ ... ? Not as easy as in:

2002 image 2015 edges

X-ray proper motion in the SE

2015 image 2015 edges

X-ray proper motion in the SE

Edges detection for region definition

Method

- Using a maximum likelihood function as estimator:
 - not using chi2 as for some bins Cts<25</p>
 - Computes the max Likelihood estimator Cash statistics (Cstat)

$$C = 2\sum_{i=1}^{N} M_{i} - S_{i} + S_{i}(ln(S_{i}) - ln(M_{i}))$$

- where S_i are the observed counts and M_i the predicted counts
- Our study: S_i is the 2002 profile and M_i a model predicting counts based on the 2015 obs
- As the 2015 exposure is much deeper, using this observation to produce a model

Results

Results

No fitting procedure but computing the Cstat for each point of the grid in the Shift-Amplitude space Computing Cstat for integer values of Shift and then interpolating Asymmetric uncertainties derived from likelihood profile (right panel)

Results

SNR age

• Simple evolution solution:

- $R_{shock} \sim t^m$ and $V_{shock} \sim m * t^{m-1}$ where m is the expansion parameter $T_{snr} = m^*R/V = m * \theta/\dot{\theta}$ observable parameter

- In a stellar wind (as in CC supernova):
 - 0.86 > m > 0.66

ejecta phase Sedov phase

- 2330 yrs > T_{snr} > 1810 yrs
- Age estimate independent of the distance !
 => Not compatible with SN393

- Using evolution equations* for given θ, θ:
 - Age and $\rho_0 = f(M_{ejecta}, E_{SN}, distance)$
- In a stellar wind and shock near the border of the cavity:

StarSupernova remnant $M_{progenitor} = M_{loss} + M_{neutronstar} + M_{ejecta}$ 14 Mo $M_{swept-up}$ $1.4 M_o$ M_{ej} $= f(\rho_0)$

 $M_{ejecta} = f(\rho_0)$

* TrueLove&McKee + Hwang&Laming

 $M_{ejecta} = f(\rho_0)$

* TrueLove&McKee + Hwang&Laming

- With M_{ej} prescription, can compute predicted θ/θ in evolution model
- For the range of allowed wind density, SNR is still in ejecta phase:
 - $T_{SNR} = 2330 \pm 150 \text{ yrs}$

- For a given Age, M_{ej}, explore density dependence on dist, E₅₁
 - for d = 1 kpc and E=10⁵¹ ergs => ρ_0 = 0.01 cm⁻³
- For such density, $M_{sweptup} = 4 M_o$ and $M_{ej} = 9 M_o$

Conclusions

RX J1713 supernova (RX J1713)

Type : Nova (Core Collapse) Magnitude : -4.50 (extinction à : -3.60) AD/Déc (J2000.0): 17h13m59.10s/-39°46'46.0" Az/Haut : +179°28'38.2"/+7°56'05.8" (apparent)

RX J1713 supernova (RX J1713)

Type : Nova (Core Collapse) Magnitude : -4.50 (extinction a : -4.05) AD/Déc (J2000.0): 17h13m59.10s/-39°46'46.0" Az/Haut : +181°10'41.2"/+16°46'39.0" (apparent)

FOV 60°

59.5 FPS -300-06-02 15:35:31 UTC+01:00